On the nature of the stock market: Simulations and experiments

In this dissertation two simple models of stock exchange are developed and simulated numerically. The first is characterized by centralized trading with a market maker. Unfortunately, this model is unable to generate realistic market dynamics. The second model discards the requirement of centralized trading. Under variation of the control parameter the model exhibits two phase transitions: both a first- and a second-order (critical). The decentralized model is able to capture many of the interesting properties observed in empirical markets. Significantly, these properties only emerge when the parameters are tuned such that the model spans the critical point. This suggests that real markets may operate at or near a critical point, but is unable to explain why this should be. One of the main points of the thesis is that these empirical phenomena are not present in the stochastic driving force, but emerge endogenously from interactions between agents.

[1]  Michele Marchesi,et al.  Testing for Non-Linear Structure in an Artificial Financial Market , 2001 .

[2]  M. Sewell Market Microstructure , 2007 .

[3]  D. Sornette,et al.  The Nasdaq crash of April 2000: Yet another example of log-periodicity in a speculative bubble ending in a crash , 2000, cond-mat/0004263.

[4]  Steve Park,et al.  Asynchronous Time Evolution in an Artificial Society Model , 2000, J. Artif. Soc. Soc. Simul..

[5]  V. Eguíluz,et al.  Transmission of information and herd Behavior: an application to financial markets. , 1999, Physical review letters.

[6]  J. Bouchaud,et al.  HERD BEHAVIOR AND AGGREGATE FLUCTUATIONS IN FINANCIAL MARKETS , 1997, Macroeconomic Dynamics.

[7]  Rosario N. Mantegna,et al.  Applications of statistical mechanics to nance , 1999 .

[8]  G. J. Rodgers,et al.  Exact solution of a model for crowding and information transmission in financial markets , 1999, cond-mat/9908481.

[9]  Víctor M. Eguíluz,et al.  Dispersion of Rumors and Herd Behavior , 1999 .

[10]  V. Plerou,et al.  Scaling of the distribution of price fluctuations of individual companies. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  R. Mantegna,et al.  Empirical investigation of stock price dynamics in an emerging market , 1999 .

[12]  D. Sornette,et al.  Self-organized percolation model for stock market fluctuations , 1999, cond-mat/9906434.

[13]  Dietrich Stauffer,et al.  FINITE-SIZE EFFECTS IN MONTE CARLO SIMULATIONS OF TWO STOCK MARKET MODELS , 1999 .

[14]  H. M. Gupta,et al.  The gradually truncated Levy flight for systems with power-law distributions , 1999 .

[15]  V. Plerou,et al.  Scaling of the distribution of fluctuations of financial market indices. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Giulia Iori,et al.  A Microsimulation of Traders Activity in the Stock Market: The Role of Heterogeneity, Agents' Interactions and Trade Frictions , 1999, adap-org/9905005.

[17]  H. Blok,et al.  Synchronous versus asynchronous updating in the ''game of Life'' , 1999 .

[18]  D. Sornette,et al.  Predicting Financial Crashes Using Discrete Scale Invariance , 1999, cond-mat/9903321.

[19]  James B Bassingthwaighte,et al.  Deriving dispersional and scaled windowed variance analyses using the correlation function of discrete fractional Gaussian noise. , 1999, Physica A.

[20]  H. Rieger,et al.  A prognosis oriented microscopic stock market model , 1999, cond-mat/9903079.

[21]  Dietrich Stauffer,et al.  FUNDAMENTAL JUDGEMENT IN CONT-BOUCHAUD HERDING MODEL OF MARKET FLUCTUATIONS , 1999 .

[22]  M. Marchesi,et al.  Scaling and criticality in a stochastic multi-agent model of a financial market , 1999, Nature.

[23]  S. Solomon Behaviorly realistic simulations of stock market traders with a soul , 1999, adap-org/9901003.

[24]  Yi-Cheng Zhang Toward a theory of marginally efficient markets , 1999, cond-mat/9901243.

[25]  Lei-Han Tang,et al.  Reaction-Diffusion-Branching Models of Stock Price Fluctuations , 1998, cond-mat/9811114.

[26]  D. Stauffer,et al.  A generalized spin model of financial markets , 1998, cond-mat/9810162.

[27]  J. Bouchaud,et al.  Are financial crashes predictable , 1998, cond-mat/9804111.

[28]  J. Farmer Market Force, Ecology, and Evolution , 1998, adap-org/9812005.

[29]  J. Ballester,et al.  IS THERE MEMORY IN SOLAR ACTIVITY , 1998 .

[30]  Fractional Brownian Motion and the Markov Property , 1998, math/9809123.

[31]  David A. Eliezer,et al.  Scaling Laws for the Market Microstructure of the Interdealer Broker Markets , 1998, cond-mat/9808240.

[32]  S. Maslov,et al.  Probability Distribution of Drawdowns in Risky Investments , 1998, cond-mat/9808295.

[33]  Dietrich Stauffer,et al.  Crossover in the Cont–Bouchaud percolation model for market fluctuations , 1998 .

[34]  J. Bouchaud Elements for a theory of financial risks , 1998, cond-mat/9806101.

[35]  P. Gopikrishnan,et al.  Inverse cubic law for the distribution of stock price variations , 1998, cond-mat/9803374.

[36]  D. Sornette,et al.  ”Direct” causal cascade in the stock market , 1998 .

[37]  D. T. Kaplan,et al.  A comparison of estimators for noise , 1998 .

[38]  D. Sornette,et al.  The sharp peak-flat trough pattern and critical speculation , 1998, cond-mat/9802234.

[39]  S. Maslov,et al.  Optimal Investment Strategy for Risky Assets , 1998, cond-mat/9801240.

[40]  M. Marsili,et al.  Dynamical optimization theory of a diversified portfolio , 1998, cond-mat/9801239.

[41]  B. Gammel Hurst's rescaled range statistical analysis for pseudorandom number generators used in physical simulations , 1997, physics/9708009.

[42]  T. Bohr,et al.  DIRECTED PERCOLATION UNIVERSALITY IN ASYNCHRONOUS EVOLUTION OF SPATIOTEMPORAL INTERMITTENCY , 1997, chao-dyn/9706021.

[43]  B. Huberman,et al.  The Instability of Markets , 1995, adap-org/9507002.

[44]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[45]  The Influence of the Number of Different Stocks on the Levy–Levy–Solomon Model , 1997 .

[46]  Yanqing Chen,et al.  Long Memory Processes ( 1 / f α Type) in Human Coordination , 1997 .

[47]  D. Percival,et al.  Analyzing exact fractal time series: evaluating dispersional analysis and rescaled range methods. , 1997, Physica A.

[48]  G. Vattay,et al.  Statistical Analysis of the Stock Index of the Budapest Stock Exchange , 1997, cond-mat/9711008.

[49]  Larry S. Liebovitch,et al.  TRANSITION FROM PERSISTENT TO ANTIPERSISTENT CORRELATION IN BIOLOGICAL SYSTEMS , 1997 .

[50]  Vern Paxson,et al.  Fast, approximate synthesis of fractional Gaussian noise for generating self-similar network traffic , 1997, CCRV.

[51]  R. Gomory,et al.  Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Selecta Volume E , 1997 .

[52]  M. Marsili,et al.  A Prototype Model of Stock Exchange , 1997, cond-mat/9709118.

[53]  P. Cizeau,et al.  Volatility distribution in the S&P500 stock index , 1997, cond-mat/9708143.

[54]  D. Percival,et al.  Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series. , 1997, Physica A.

[55]  D. Sornette Discrete scale invariance and complex dimensions , 1997, cond-mat/9707012.

[56]  P. Cizeau,et al.  CORRELATIONS IN ECONOMIC TIME SERIES , 1997, cond-mat/9706021.

[57]  J. Bouchaud,et al.  Scaling in Stock Market Data: Stable Laws and Beyond , 1997, cond-mat/9705087.

[58]  Birger Bergersen,et al.  Effect of boundary conditions on scaling in the ''game of Life'' , 1997 .

[59]  David P. Brown,et al.  Market Orders and Market Efficiency , 1997 .

[60]  N. Rajewsky,et al.  Exact results for one-dimensional cellular automata with different types of updates , 1996, cond-mat/9611154.

[61]  M. Shubik,et al.  Price Variations in a Stock Market with Many Agents , 1996, cond-mat/9609144.

[62]  D. Groleau Study of the scaling and temporal properties of a simplified earthquake model , 1997 .

[63]  D. Sornette Discrete Scale Invariance , 1997 .

[64]  Murad S. Taqqu,et al.  Robustness of whittle-type estimators for time series with long-range dependence , 1997 .

[65]  Per Bak,et al.  How Nature Works: The Science of Self‐Organized Criticality , 1997 .

[66]  R. Palmer,et al.  Asset Pricing Under Endogenous Expectations in an Artificial Stock Market , 1996 .

[67]  D. Sornette,et al.  Discrete Scaling in Earthquake Precursory Phenomena: Evidence in the Kobe Earthquake, Japan , 1996 .

[68]  Didier Sornette,et al.  Discrete scale invariance, complex fractal dimensions, and log‐periodic fluctuations in seismicity , 1996 .

[69]  Zhi-min Yin,et al.  New Methods for Simulation of Fractional Brownian Motion , 1996 .

[70]  M. Paluš Detecting Nonlinearity in Multivariate Time Series , 1996 .

[71]  Stephen M. Kogon,et al.  Signal modeling with self-similar α-stable processes: the fractional Levy stable motion model , 1996, IEEE Trans. Signal Process..

[72]  D. Sornette,et al.  Stock Market Crashes, Precursors and Replicas , 1995, cond-mat/9510036.

[73]  W. Willinger,et al.  ESTIMATORS FOR LONG-RANGE DEPENDENCE: AN EMPIRICAL STUDY , 1995 .

[74]  Moshe Levy,et al.  Microscopic Simulation of the Stock Market: the Effect of Microscopic Diversity , 1995 .

[75]  M. Paluvs,et al.  Estimating Predictability: Redundancy and Surrogate Data Method , 1995, comp-gas/9507003.

[76]  R. Mantegna,et al.  Scaling behaviour in the dynamics of an economic index , 1995, Nature.

[77]  Koponen,et al.  Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[78]  Cao,et al.  Predicting and characterizing data sequences from structure-variable systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[79]  Didier Sornette,et al.  Complex Critical Exponents from Renormalization Group Theory of Earthquakes: Implications for Earthquake Predictions , 1995 .

[80]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[81]  Didier Sornette,et al.  Mapping Self-Organized Criticality onto Criticality , 1994, adap-org/9411002.

[82]  Stanley,et al.  Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. , 1994, Physical review letters.

[83]  Rodney A. Brooks,et al.  Asynchrony induces stability in cellular automata based models , 1994 .

[84]  Tad Hogg,et al.  Bubbles and Market Crashes , 1994, adap-org/9409001.

[85]  R. Palmer,et al.  Artificial economic life: a simple model of a stockmarket , 1994 .

[86]  S. Rambaldi,et al.  An accurate fractional Brownian motion generator , 1994 .

[87]  C. Peng,et al.  Mosaic organization of DNA nucleotides. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[88]  Maya Paczuski,et al.  Why Nature is complex , 1993 .

[89]  Germán Poveda,et al.  The Hurst Effect: The scale of fluctuation approach , 1993 .

[90]  B A Huberman,et al.  Evolutionary games and computer simulations. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[91]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[92]  J. V. van Beek,et al.  Four methods to estimate the fractal dimension from self-affine signals (medical application) , 1992, IEEE Engineering in Medicine and Biology Magazine.

[93]  M. Casdagli Chaos and Deterministic Versus Stochastic Non‐Linear Modelling , 1992 .

[94]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[95]  R. C. Merton,et al.  Continuous-Time Finance , 1990 .

[96]  George Sugihara,et al.  Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.

[97]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[98]  A. Lo Long-Term Memory in Stock Market Prices , 1989 .

[99]  Tang,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[100]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[101]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[102]  R. Voss Random Fractal Forgeries , 1985 .

[103]  Ole G. Mouritsen,et al.  Computer Studies of Phase Transitions and Critical Phenomena , 1984 .

[104]  E. Montroll,et al.  Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: A tale of tails , 1983 .

[105]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[106]  I. Good,et al.  The Maximum Entropy Formalism. , 1979 .

[107]  E. Montroll,et al.  CHAPTER 2 – On an Enriched Collection of Stochastic Processes* , 1979 .

[108]  Leon S. Lasdon,et al.  Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming , 1978, TOMS.

[109]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[110]  Y. Sinai Self-Similar Probability Distributions , 1976 .

[111]  Sanford J. Grossman ON THE EFFICIENCY OF COMPETITIVE STOCK MARKETS WHERE TRADES HAVE DIVERSE INFORMATION , 1976 .

[112]  William H. Starbuck,et al.  Computer simulation of human behavior , 1973 .

[113]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[114]  P. Clark A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices , 1973 .

[115]  B. Mandelbrot A Fast Fractional Gaussian Noise Generator , 1971 .

[116]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[117]  J. Pratt RISK AVERSION IN THE SMALL AND IN THE LARGE11This research was supported by the National Science Foundation (grant NSF-G24035). Reproduction in whole or in part is permitted for any purpose of the United States Government. , 1964 .

[118]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[119]  M. Osborne Brownian Motion in the Stock Market , 1959 .

[120]  John L. Kelly,et al.  A new interpretation of information rate , 1956, IRE Trans. Inf. Theory.

[121]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[122]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[123]  A. Copeland Review: John von Neumann and Oskar Morgenstern, Theory of games and economic behavior , 1945 .

[124]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[125]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .