Low-Rank Dynamics for Computing Extremal Points of Real Pseudospectra

We consider the real $\varepsilon$-pseudospectrum of a real square matrix, which is the set of eigenvalues of all real matrices that are $\varepsilon$-close to the given matrix, where closeness is measured in either the 2-norm or the Frobenius norm. We characterize extremal points and compare the situation with that for the complex $\varepsilon$-pseudospectrum. We present differential equations for rank-1 and rank-2 matrices for the computation of the real pseudospectral abscissa and radius. Discretizations of the differential equations yield algorithms that are fast and well suited for sparse large matrices. Based on these low-rank differential equations, we further obtain an algorithm for drawing boundary sections of the real pseudospectrum with respect to both the 2-norm and the Frobenius norm.

[1]  Anders Rantzer,et al.  Real Perturbation Values and Real Quadratic Forms in a Complex Vector Space , 1998 .

[2]  Li Qiu,et al.  On the computation of the real Hurwitz-stability radius , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[3]  Othmar Koch,et al.  Dynamical Low-Rank Approximation , 2007, SIAM J. Matrix Anal. Appl..

[4]  S. Rump EIGENVALUES, PSEUDOSPECTRUM AND STRUCTURED PERTURBATIONS , 2006 .

[5]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[6]  W. R. Howard,et al.  Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness , 2005 .

[7]  A. Spence,et al.  Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices , 1994 .

[8]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[9]  G. Olsder Mathematical Systems Theory , 2011 .

[10]  K. Meerbergen,et al.  Matrix transformations for computing rightmost eigenvalues of large sparse non-symmetric eigenvalue problems , 1996 .

[11]  Paul Van Dooren,et al.  A fast algorithm to compute the real structured stability radius , 1996 .

[12]  Tosio Kato Perturbation theory for linear operators , 1966 .

[13]  Lloyd N. Trefethen,et al.  Computation of pseudospectra , 1999, Acta Numerica.

[14]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[15]  Nicola Guglielmi,et al.  Differential Equations for Roaming Pseudospectra: Paths to Extremal Points and Boundary Tracking , 2011, SIAM J. Numer. Anal..

[16]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[17]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[18]  Daniel Kressner,et al.  On the Condition of a Complex Eigenvalue under Real Perturbations , 2004 .

[19]  Daniel Kressner,et al.  On the computation of structured singular values and pseudospectra , 2010, Syst. Control. Lett..

[20]  Michael L. Overton,et al.  Fast Algorithms for the Approximation of the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix , 2011, SIAM J. Matrix Anal. Appl..