Lean tree-cut decompositions: obstructions and algorithms
暂无分享,去创建一个
Dimitrios M. Thilikos | O-joung Kwon | Archontia C. Giannopoulou | Jean-Florent Raymond | D. Thilikos | Jean-Florent Raymond | O-joung Kwon
[1] Paul Wollan,et al. The structure of graphs not admitting a fixed immersion , 2013, J. Comb. Theory, Ser. B.
[2] Sang-il Oum,et al. Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.
[3] Michal Pilipczuk,et al. Randomized Contractions Meet Lean Decompositions , 2018, ACM Trans. Algorithms.
[4] Robin Thomas,et al. A menger-like property of tree-width: The finite case , 1990, J. Comb. Theory, Ser. B.
[5] Jeffrey Azzato,et al. Linked tree-decompositions of represented infinite matroids , 2011, J. Comb. Theory, Ser. B.
[6] Dimitrios M. Thilikos,et al. An FPT 2-Approximation for Tree-Cut Decomposition , 2015, Algorithmica.
[7] Paul D. Seymour,et al. Tournament minors , 2012, J. Comb. Theory, Ser. B.
[8] Reinhard Diestel,et al. k-Blocks: A Connectivity Invariant for Graphs , 2013, SIAM J. Discret. Math..
[9] Mamadou Moustapha Kanté,et al. An Upper Bound on the Size of Obstructions for Bounded Linear Rank-Width , 2014, ArXiv.
[10] Jim Geelen,et al. A generalization of the Grid Theorem , 2016 .
[11] K. Menger. Zur allgemeinen Kurventheorie , 1927 .
[12] Robert Ganian,et al. Algorithmic Applications of Tree-Cut Width , 2015, MFCS.
[13] Fedor V. Fomin,et al. Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.
[14] Tibor Grünwald,et al. Ein Neuer Beweis Eines Mengerschen Satzes , 1938 .
[15] Michal Pilipczuk,et al. Linear kernels for edge deletion problems to immersion-closed graph classes , 2016, ICALP.
[16] Rajeev Govindan,et al. A weak immersion relation on graphs and its applications , 2001, Discret. Math..
[17] Robin Thomas,et al. Typical Subgraphs of 3- and 4-Connected Graphs , 1993, J. Comb. Theory, Ser. B.
[18] Jens Lagergren,et al. Upper Bounds on the Size of Obstructions and Intertwines , 1998, J. Comb. Theory, Ser. B.
[19] Paul D. Seymour,et al. Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.
[20] Joshua Erde,et al. A unified treatment of linked and lean tree-decompositions , 2017, J. Comb. Theory, Ser. B.
[21] Dimitrios M. Thilikos,et al. An O(log OPT)-approximation for covering and packing minor models of $θr , 2015, ArXiv.
[22] Paul D. Seymour,et al. Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.
[23] Chun-Hung Liu,et al. Graph structures and well-quasi-ordering , 2014 .
[24] Paul Wollan,et al. Finding topological subgraphs is fixed-parameter tractable , 2010, STOC '11.
[25] Paul D. Seymour,et al. Graph minors XXIII. Nash-Williams' immersion conjecture , 2010, J. Comb. Theory, Ser. B.
[26] Sang-il Oum,et al. Rank-Width and Well-Quasi-Ordering , 2008, SIAM J. Discret. Math..
[27] Shiva Kintali. Directed Minors III. Directed Linked Decompositions , 2014 .
[28] Bert Gerards,et al. Branch-Width and Well-Quasi-Ordering in Matroids and Graphs , 2002, J. Comb. Theory, Ser. B.
[29] Dimitrios M. Thilikos,et al. (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[30] Michal Pilipczuk,et al. Cutwidth: Obstructions and Algorithmic Aspects , 2016, Algorithmica.
[31] Neil Robertson,et al. Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.
[32] Geoff Whittle,et al. Branch-Width and Rota's Conjecture , 2002, J. Comb. Theory, Ser. B.
[33] Reinhard Diestel,et al. Two Short Proofs Concerning Tree-Decompositions , 2002, Combinatorics, Probability and Computing.
[34] Michal Pilipczuk,et al. A ck n 5-Approximation Algorithm for Treewidth , 2016, SIAM J. Comput..
[35] Michael A. Langston,et al. Cutwidth approximation in linear time , 1992, [1992] Proceedings of the Second Great Lakes Symposium on VLSI.
[36] Dimitrios M. Thilikos,et al. Minors in graphs of large ϴr-girth , 2017, Eur. J. Comb..