Lean tree-cut decompositions: obstructions and algorithms

The notion of tree-cut width has been introduced by Wollan in [The structure of graphs not admitting a fixed immersion, Journal of Combinatorial Theory, Series B, 110:47-66, 2015]. It is defined via tree-cut decompositions, which are tree-like decompositions that highlight small (edge) cuts in a graph. In that sense, tree-cut decompositions can be seen as an edge-version of tree-decompositions and have algorithmic applications on problems that remain intractable on graphs of bounded treewidth. In this paper, we prove that every graph admits an optimal tree-cut decomposition that satisfies a certain Menger-like condition similar to that of the lean tree decompositions of Thomas [A Menger-like property of tree-width: The finite case, Journal of Combinatorial Theory, Series B, 48(1):67-76, 1990]. This allows us to give, for every k ∈ N, an upper-bound on the number immersion-minimal graphs of tree-cut width k. Our results imply the constructive existence of a linear FPT-algorithm for tree-cut width.

[1]  Paul Wollan,et al.  The structure of graphs not admitting a fixed immersion , 2013, J. Comb. Theory, Ser. B.

[2]  Sang-il Oum,et al.  Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.

[3]  Michal Pilipczuk,et al.  Randomized Contractions Meet Lean Decompositions , 2018, ACM Trans. Algorithms.

[4]  Robin Thomas,et al.  A menger-like property of tree-width: The finite case , 1990, J. Comb. Theory, Ser. B.

[5]  Jeffrey Azzato,et al.  Linked tree-decompositions of represented infinite matroids , 2011, J. Comb. Theory, Ser. B.

[6]  Dimitrios M. Thilikos,et al.  An FPT 2-Approximation for Tree-Cut Decomposition , 2015, Algorithmica.

[7]  Paul D. Seymour,et al.  Tournament minors , 2012, J. Comb. Theory, Ser. B.

[8]  Reinhard Diestel,et al.  k-Blocks: A Connectivity Invariant for Graphs , 2013, SIAM J. Discret. Math..

[9]  Mamadou Moustapha Kanté,et al.  An Upper Bound on the Size of Obstructions for Bounded Linear Rank-Width , 2014, ArXiv.

[10]  Jim Geelen,et al.  A generalization of the Grid Theorem , 2016 .

[11]  K. Menger Zur allgemeinen Kurventheorie , 1927 .

[12]  Robert Ganian,et al.  Algorithmic Applications of Tree-Cut Width , 2015, MFCS.

[13]  Fedor V. Fomin,et al.  Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[14]  Tibor Grünwald,et al.  Ein Neuer Beweis Eines Mengerschen Satzes , 1938 .

[15]  Michal Pilipczuk,et al.  Linear kernels for edge deletion problems to immersion-closed graph classes , 2016, ICALP.

[16]  Rajeev Govindan,et al.  A weak immersion relation on graphs and its applications , 2001, Discret. Math..

[17]  Robin Thomas,et al.  Typical Subgraphs of 3- and 4-Connected Graphs , 1993, J. Comb. Theory, Ser. B.

[18]  Jens Lagergren,et al.  Upper Bounds on the Size of Obstructions and Intertwines , 1998, J. Comb. Theory, Ser. B.

[19]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[20]  Joshua Erde,et al.  A unified treatment of linked and lean tree-decompositions , 2017, J. Comb. Theory, Ser. B.

[21]  Dimitrios M. Thilikos,et al.  An O(log OPT)-approximation for covering and packing minor models of $θr , 2015, ArXiv.

[22]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[23]  Chun-Hung Liu,et al.  Graph structures and well-quasi-ordering , 2014 .

[24]  Paul Wollan,et al.  Finding topological subgraphs is fixed-parameter tractable , 2010, STOC '11.

[25]  Paul D. Seymour,et al.  Graph minors XXIII. Nash-Williams' immersion conjecture , 2010, J. Comb. Theory, Ser. B.

[26]  Sang-il Oum,et al.  Rank-Width and Well-Quasi-Ordering , 2008, SIAM J. Discret. Math..

[27]  Shiva Kintali Directed Minors III. Directed Linked Decompositions , 2014 .

[28]  Bert Gerards,et al.  Branch-Width and Well-Quasi-Ordering in Matroids and Graphs , 2002, J. Comb. Theory, Ser. B.

[29]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[30]  Michal Pilipczuk,et al.  Cutwidth: Obstructions and Algorithmic Aspects , 2016, Algorithmica.

[31]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[32]  Geoff Whittle,et al.  Branch-Width and Rota's Conjecture , 2002, J. Comb. Theory, Ser. B.

[33]  Reinhard Diestel,et al.  Two Short Proofs Concerning Tree-Decompositions , 2002, Combinatorics, Probability and Computing.

[34]  Michal Pilipczuk,et al.  A ck n 5-Approximation Algorithm for Treewidth , 2016, SIAM J. Comput..

[35]  Michael A. Langston,et al.  Cutwidth approximation in linear time , 1992, [1992] Proceedings of the Second Great Lakes Symposium on VLSI.

[36]  Dimitrios M. Thilikos,et al.  Minors in graphs of large ϴr-girth , 2017, Eur. J. Comb..