Evidence for a ∼ 200–100 ka meteorite impact in the Western Desert of Egypt

[1]  Rushdi Said The Geology Of Egypt , 1962 .

[2]  G. Lofgren An experimental study of plagioclase crystal morphology; isothermal crystallization , 1974 .

[3]  C. Donaldson An experimental investigation of olivine morphology , 1976 .

[4]  S. Kieffer,et al.  The role of volatiles and lithology in the impact cratering process. , 1980 .

[5]  Nomenclature of pyroxenes. , 1988 .

[6]  Nobuo Morimoto,et al.  Nomenclature of Pyroxenes , 1988, Mineralogical Magazine.

[7]  P. A. Cross,et al.  Lecture notes in Earth sciences: Vol. 12. S. Turner (Editor), Applied Geodesy VIII, Springer, Berlin, F.R.G., 1987, 393pp, DM78.00, ISBN 3 540 182195 , 1989 .

[8]  J. Zachos,et al.  Glass from the Cretaceous/Tertiary boundary in Haiti , 1991, Nature.

[9]  I. Brookes Geomorphology and Quaternary geology of the Dakhla Oasis Region, Egypt , 1993 .

[10]  Falko Langenhorst,et al.  Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience* , 1996 .

[11]  Bevan M. French,et al.  Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures , 1998 .

[12]  G. Graup Carbonate‐silicate liquid immiscibility upon impact melting: Ries Crater, Germany , 1999 .

[13]  C. S. Churcher,et al.  Reports from the survey of the Dakhleh Oasis, western desert of Egypt, 1977-1987 , 1999 .

[14]  H. Schwarcz,et al.  Faunal remains from a Middle Pleistocene lacustrine marl in Dakhleh Oasis, Egypt: palaeoenvironmental reconstructions , 1999 .

[15]  A. Jones,et al.  Impact melting of carbonates from the Chicxulub crater , 2000 .

[16]  M. Malin,et al.  Sedimentary rocks of early Mars. , 2000, Science.

[17]  B. Dressler,et al.  Terrestrial impact melt rocks and glasses , 2001 .

[18]  Falko Langenhorst,et al.  Evidence for shock metamorphism in sandstones from the Libyan Desert Glass strewn field , 2001 .

[19]  F. Hörz,et al.  Petrographic studies of the impact melts from Meteor Crater, Arizona, USA , 2002 .

[20]  R. Grieve,et al.  Mineralogy and petrology of melt rocks from the Popigai impact structure, Siberia , 2002 .

[21]  J. Wasson,et al.  Large aerial bursts: an important class of terrestrial accretionary events. , 2001, Astrobiology.

[22]  J. Rubio,et al.  Spatial patterns of soil temperatures during experimental fires , 2004 .

[23]  Steven W. Squyres,et al.  Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars , 2005 .

[24]  Nicholas P. Kalodimos,et al.  Tree Mold Evidence of Loulu Palm (Pritchardia sp.) Forest on the Kona Coast, Hawai‘i1 , 2005 .

[25]  A. Haldemann,et al.  Volatiles in the desert: subtle remote-sensing signatures of the Dakhleh oasis catastrophic event, Western Desert, Egypt , 2005 .

[26]  G. Ori,et al.  Chemical compositions of impact melt breccias and target rocks from the Tenoumer impact crater, Mauritania , 2005 .

[27]  J. Spray,et al.  Impactites of the Haughton impact structure, Devon Island, Canadian High Arctic , 2005 .

[28]  G. Osinski Effect of volatiles and target lithology on the generation and emplacement of impact crater fill and ejecta deposits on Mars , 2006 .

[29]  V. V. Svetsov Thermal Radiation on the Ground from Large Aerial Bursts Caused by Tunguska-like Impacts , 2006 .