Bootstrap Standard Error Estimates for Linear Regression

Standard errors of parameter estimates are widely used in empirical work. The bootstrap often can provide a convenient means of estimating standard errors. The conditions under which bootstrap standard error estimates are theoretically justified have not received much attention, however. This article establishes conditions for the consistency of the moving blocks bootstrap estimators of the variance of the least squares estimator in linear dynamic models with dependent data. We discuss several applications of this result, in particular, the use of bootstrap standard error estimates for bootstrapping Studentized statistics. A simulation study shows that inference based on bootstrap standard error estimates may be considerably more accurate in small samples than inference based on closed-form asymptotic estimates.

[1]  D. Freedman,et al.  Bootstrapping a Regression Equation: Some Empirical Results , 1984 .

[2]  Donald W. K. Andrews,et al.  Non-strong mixing autoregressive processes , 1984, Journal of Applied Probability.

[3]  R. Hodrick Dividend Yields and Expected Stock Returns: Alternative Procedures for Interference and Measurement , 1991 .

[4]  P. Billingsley,et al.  Probability and Measure , 1980 .

[5]  D. Andrews Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation , 1991 .

[6]  M. Chavance [Jackknife and bootstrap]. , 1992, Revue d'epidemiologie et de sante publique.

[7]  J. Shao Bootstrap variance estimators with truncation , 1992 .

[8]  Regina Y. Liu,et al.  Efficiency and robustness in resampling , 1992 .

[9]  Robert Tibshirani,et al.  Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .

[10]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[11]  James Davidson,et al.  Establishing conditions for the functional central limit theorem in nonlinear and semiparametric time series processes , 2002 .

[12]  J. MacKinnon Bootstrap Methods in Econometrics , 2006 .

[13]  E. Fama,et al.  Dividend yields and expected stock returns , 1988 .

[14]  Bernd Fitzenberger,et al.  The moving blocks bootstrap and robust inference for linear least squares and quantile regressions , 1998 .

[15]  Hans R. Künsch,et al.  Second-order correctness of the blockwise bootstrap for stationary observations , 1996 .

[16]  G. Maddala,et al.  Bootstrap Variance Estimation of Nonlinear Functions of Parameters: An Application to Long-Run Elasticities of Energy Demand , 1999, Review of Economics and Statistics.

[17]  M. Pithon,et al.  Erratum , 1998 .

[18]  J. MacKinnon,et al.  Bootstrap Testing in Nonlinear Models , 1999 .

[19]  Halbert White,et al.  Time-series estimation of the effects of natural experiments , 2006 .

[20]  Moshe Buchinsky Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study , 1995 .

[21]  H. White,et al.  Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models , 2000 .

[22]  J. Hahn Bootstrapping Quantile Regression Estimators , 1995, Econometric Theory.

[23]  H. R. K. unsch,et al.  Second Order Correctness of the Blockwise Bootstrap for Stationary Observations , 1996 .

[24]  H. White,et al.  A Unified Theory of Estimation and Inference for Nonlinear Dynamic Models , 1988 .

[25]  Michael Wolf,et al.  Improved nonparametric confidence intervals in time series regressions , 2002 .

[26]  W. Greub Linear Algebra , 1981 .

[27]  Bruce E. Hansen,et al.  Strong Laws for Dependent Heterogeneous Processes , 1991, Econometric Theory.

[28]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[29]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[30]  D. McLeish A Maximal Inequality and Dependent Strong Laws , 1975 .

[31]  G. J. Babu,et al.  A Note on Bootstrapping the Sample Median , 1984 .

[32]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[33]  A. C. Davison,et al.  ON STUDENTIZING AND BLOCKING METHODS FOR IMPLEMENTING THE BOOTSTRAP WITH DEPENDENT DATA , 1993 .

[34]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[35]  Lutz Kilian,et al.  Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions? , 1999 .

[36]  Exchange Rates and Fundamentals , 2005 .

[37]  Chris Kirby The Restrictions on Predictability Implied by Rational Asset Pricing Models , 1998 .

[38]  J. Davidson Stochastic Limit Theory , 1994 .

[39]  Michael Wolf,et al.  Subsampling for heteroskedastic time series , 1997 .

[40]  H. White,et al.  THE BOOTSTRAP OF THE MEAN FOR DEPENDENT HETEROGENEOUS ARRAYS , 2001, Econometric Theory.

[41]  Regina Y. Liu Moving blocks jackknife and bootstrap capture weak dependence , 1992 .

[42]  J. Behboodian,et al.  Bayesian multivariate normal analysis under the extended reflected normal loss function , 2001 .

[43]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .