The subgaussian constant and concentration inequalities

We study concentration inequalities for Lipschitz functions on graphs by estimating the optimal constant in exponential moments of subgaussian type. This is illustrated on various graphs and related to various graph constants. We also settle, in the affirmative, a question of Talagrand on a deviation inequality for the discrete cube.

[1]  Oliver Riordan An Ordering on the Even Discrete Torus , 1998, SIAM J. Discret. Math..

[2]  G. Schechtman Lévy type inequality for a class of finite metric spaces , 1982 .

[3]  Christian Houdré Mixed and Isoperimetric Estimates on the Log-Sobolev Constants of Graphs and Markov Chains , 2001, Comb..

[4]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[5]  M. Pratelli,et al.  Probability and Analysis , 1986 .

[6]  Noga Alon,et al.  An Asymptotic Isoperimetric Inequality , 1998 .

[7]  L. H. Harper On an Isoperimetric Problem for Hamming Graphs , 1999, Discret. Appl. Math..

[8]  Béla Bollobás,et al.  Isoperimetric inequalities and fractional set systems , 1991, J. Comb. Theory, Ser. A.

[9]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[10]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[11]  S. M. Samuels,et al.  Monotone Convergence of Binomial Probabilities and a Generalization of Ramanujan's Equation , 1968 .

[12]  G. Pisier Probabilistic methods in the geometry of Banach spaces , 1986 .

[13]  S. Aida,et al.  Logarithmic Sobolev Inequalities and Exponential Integrability , 1994 .

[14]  Prasad Tetali,et al.  Concentration of Measure for Products of Markov Kernels and Graph Products via Functional Inequalities , 2001, Combinatorics, Probability and Computing.

[15]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[16]  Christian Houdré,et al.  Variance of Lipschitz functions and an isoperimetric problem for a class of product measures , 1996 .

[17]  M. Ledoux Concentration of measure and logarithmic Sobolev inequalities , 1999 .

[18]  Béla Bollobás,et al.  Compressions and isoperimetric inequalities , 1990, J. Comb. Theory, Ser. A.

[19]  S. Bobkov,et al.  Poincaré’s inequalities and Talagrand’s concentration phenomenon for the exponential distribution , 1997 .

[20]  S. Bobkov,et al.  Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .

[21]  L. H. Harper Optimal numberings and isoperimetric problems on graphs , 1966 .

[22]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[23]  M. Talagrand Isoperimetry and Integrability of the Sum of Independent Banach-Space Valued Random Variables , 1989 .

[24]  Béla Bollobás,et al.  An Isoperimetric Inequality on the Discrete Torus , 1990, SIAM J. Discret. Math..

[25]  V. Milman,et al.  Unconditional and symmetric sets inn-dimensional normed spaces , 1980 .

[26]  G. Pisier ASYMPTOTIC THEORY OF FINITE DIMENSIONAL NORMED SPACES (Lecture Notes in Mathematics 1200) , 1987 .

[27]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .