Modern Heuristics for Finance Problems: A Survey of Selected Methods and Applications

The high computational complexity of many problems in financial decision-making has prevented the development of time-efficient deterministic solution algorithms so far. At least for some of these problems, e.g., constrained portfolio selection or non-linear time series prediction problems, the results from complexity theory indicate that there is no way to avoid this problem. Due to the practical importance of these problems, we require algorithms for finding optimal or near-optimal solutions within reasonable computing time. Hence, heuristic approaches are an interesting alternative to classical approximation algorithms for such problems. Over the last years many interesting ideas for heuristic approaches were developed and tested for financial decision-making. We present an overview of the relevant methodology, and, some applications that show interesting results for selected problems in finance.

[1]  Pietro Terna,et al.  Neural Networks for Economic and Financial Modelling , 1995 .

[2]  Peter Winker,et al.  New concepts and algorithms for portfolio choice , 1992 .

[3]  Detlef Seese,et al.  A Fuzzy-Hybrid Approach to Stock Trading , 1998, ICONIP.

[4]  Heinrich Rommelfanger,et al.  Fuzzy Logic Based Risk Management in Financial Intermediation , 2001 .

[5]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[6]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[7]  David B. Fogel,et al.  A history of evolutionary computation , 2018, Evolutionary Computation 1.

[8]  Jörg Baetge,et al.  Measurement of the Probability of Insolvency with Mixture-of-Experts Networks , 1999 .

[9]  Kevin G. Coleman,et al.  Neural networks for bankruptcy prediction: the power to solve financial problems , 1991 .

[10]  R. C. Merton,et al.  An analytic derivation of the cost of deposit insurance and loan guarantees An application of modern option pricing theory , 1977 .

[11]  Mark Girolami,et al.  Self-Organising Neural Networks , 1999 .

[12]  Ignacio Olmeda,et al.  Forecasting Exchange Rates Volatilities Using Artificial Neural Networks , 2000 .

[13]  Sukhdev Khebbal,et al.  Intelligent Hybrid Systems , 1994 .

[14]  A. Lo,et al.  Frontiers of finance: evolution and efficient markets. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Hermann Locarek-Junge,et al.  Estimating Value-at-Risk Using Neural Networks , 1998 .

[16]  Teuvo Kohonen,et al.  Visual Explorations in Finance , 1998 .

[17]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[18]  Bart Kosko,et al.  Fuzzy Systems as Universal Approximators , 1994, IEEE Trans. Computers.

[19]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[20]  Linda Salchenberger,et al.  Beating the best: A neural network challenges the Black-Scholes formula , 1993, Proceedings of 9th IEEE Conference on Artificial Intelligence for Applications.

[21]  Constantin von Altrock,et al.  Fuzzy Logic and NeuroFuzzy Applications in Business and Finance , 1996 .

[22]  Richard J. Bauer,et al.  Genetic Algorithms and Investment Strategies , 1994 .

[23]  Célia da Costa Pereira,et al.  An Evolutionary Approach to Multiperiod Asset Allocation , 2000, EuroGP.

[24]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[25]  Shu-Heng Chen,et al.  Towards an Agent-Based Foundation of Financial Econometrics: An Approach Based on Genetic-Programming Artificial Markets , 1999, GECCO.

[26]  Linda Salchenberger,et al.  A neural network model for estimating option prices , 1993, Applied Intelligence.

[27]  Yaochu Jin,et al.  Advanced fuzzy systems design and applications , 2003, Studies in Fuzziness and Soft Computing.

[28]  F. Black,et al.  The Valuation of Option Contracts and a Test of Market Efficiency , 1972 .

[29]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[30]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[31]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[32]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[33]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[34]  J. Stephen Judd,et al.  Learning in neural networks , 1988, COLT '88.

[35]  Philippe Jorion Value at risk: the new benchmark for controlling market risk , 1996 .

[36]  Christof Weinhardt,et al.  Informationssysteme in der Finanzwirtschaft , 1999, Wirtschaftsinf..

[37]  John R. Koza,et al.  Genetic Programming II , 1992 .

[38]  Achilleas Zapranis,et al.  Principles of Neural Model Identification, Selection and Adequacy: With Applications to Financial Econometrics , 1999 .

[39]  Shu-Heng Chen Evolutionary Computation in Economics and Finance , 2002 .

[40]  Edward I. Altman,et al.  Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience) , 1994 .

[41]  John M. Mulvey,et al.  Solving Dynamic Stochastic Control Problems in Finance Using Tabu Search with Variable Scaling , 1996 .

[42]  Blake LeBaron,et al.  Computational finance 1999 , 2000 .

[43]  Jason Kingdon Intelligent systems and financial forecasting , 1997, Perspectives in neural computing.

[44]  A. Refenes Neural Networks in the Capital Markets , 1994 .

[45]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[46]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[47]  O. Nelles Nonlinear System Identification , 2001 .

[48]  Jörg Baetge,et al.  The Classification of Companies by Means of Neural Networks , 1994 .

[49]  Günter Rudolph,et al.  Finite Markov Chain Results in Evolutionary Computation: A Tour d'Horizon , 1998, Fundam. Informaticae.

[50]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[51]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[52]  L. Wang,et al.  Fuzzy systems are universal approximators , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[53]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[54]  Ingo Wegener On the Expected Runtime and the Success Probability of Evolutionary Algorithms , 2000 .

[55]  Eduardo S. Schwartz,et al.  The Valuation of American Put Options , 1977 .

[56]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[57]  R. Palmer,et al.  Time series properties of an artificial stock market , 1999 .

[58]  Ramesh Sharda,et al.  A neural network model for bankruptcy prediction , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[59]  J. Stephen Judd Time complexity of learning , 1998 .

[60]  Gerhard W. Dueck,et al.  Threshold accepting: a general purpose optimization algorithm appearing superior to simulated anneal , 1990 .

[61]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[62]  Ramesh Sharda,et al.  Bankruptcy prediction using neural networks , 1994, Decis. Support Syst..

[63]  Detlef Seese,et al.  Finding Constrained Downside Risk-Return Efficient Credit Portfolio Structures Using Hybrid Multi-Objective Evolutionary Computation , 2003 .

[64]  Manfred Gilli,et al.  The Threshold Accepting Heuristic for Index Tracking , 2001 .

[65]  Rudolf Kruse,et al.  Neuro-Fuzzy Methods in Finance Applied to the German Stock Index DAX , 1998 .

[66]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[67]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[68]  Hans-Georg Zimmermann,et al.  Advanced Adaptive Architectures for Asset Allocation , 2000 .

[69]  R. Ribeiro Soft computing in financial engineering , 1999 .

[70]  Thomas Riechmann Learning in Economics , 2001 .

[71]  Suran Asitha Goonatilake,et al.  Intelligent Systems for Finance and Business , 1995 .

[72]  Danuta Rutkowska,et al.  Neuro-Fuzzy Architectures and Hybrid Learning , 2002, Studies in Fuzziness and Soft Computing.

[73]  Riccardo Poli,et al.  Foundations of Genetic Programming , 1999, Springer Berlin Heidelberg.

[74]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[75]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[76]  Rashmi Malhotra,et al.  Predicting Credit Risk- A Neural Network Approach , 1993 .

[77]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[78]  Ajith Abraham,et al.  Hybrid information systems , 2002 .

[79]  I H Osman,et al.  Meta-Heuristics Theory and Applications , 2011 .

[80]  Rob J. Hyndman,et al.  The Pricing and Trading of Options using a Hybrid Neural Network Model with Historical Volatility , 1997 .

[81]  Edward I. Altman,et al.  FINANCIAL RATIOS, DISCRIMINANT ANALYSIS AND THE PREDICTION OF CORPORATE BANKRUPTCY , 1968 .

[82]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[83]  Da Ruan,et al.  Soft Computing for Risk Evaluation and Management , 2001 .

[84]  E. Michael Azoff,et al.  Neural Network Time Series: Forecasting of Financial Markets , 1994 .

[85]  Joachim Coche An evolutionary approach to the examination of capital market efficiency , 1998 .

[86]  Robert J. Schalkoff,et al.  Artificial neural networks , 1997 .

[87]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[88]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[89]  Piotr S. Szczepaniak,et al.  Computational intelligence and applications , 1999 .

[90]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[91]  Ralf Der,et al.  Efficient State-Space Representation by Neural Maps for Reinforcement Learning , 1999 .

[92]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..