Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis

Annelot M. Dekker | Raymond D. Schellevis | P. Visscher | N. Wray | A. Hofman | A. Uitterlinden | S. Cichon | R. Ophoff | M. Rietschel | M. Nöthen | G. Comi | G. Breen | C. Lewis | A. Goris | Robert H. Brown | O. Witte | P. D. de Bakker | J. Trojanowski | J. Hardy | F. Rivadeneira | T. Meitinger | W. Lieb | J. Dartigues | E. Beghi | J. Powell | A. Al-Chalabi | C. Shaw | B. Landwehrmeyer | P. Amouyel | S. Pulit | P. Andersen | H. Blauw | A. Chiò | F. Diekstra | J. Glass | O. Hardiman | J. Landers | R. McLaughlin | V. Meininger | W. Robberecht | F. Salachas | A. Shatunov | Bradley N Smith | S. Topp | P. van Damme | L. H. van den Berg | M. V. van Es | J. Veldink | T. Pers | L. Franke | C. Curtis | S. Arcuti | G. Logroscino | R. Orrell | B. Koritnik | J. Zidar | C. Tzourio | P. Lichtner | A. Franke | S. Chandran | K. Estrada | M. de Carvalho | A. Menelaou | O. Pansarasa | C. Cereda | T. Ringer | A. Dürr | A. Brice | S. Petri | P. Leigh | Jian Yang | N. Wood | A. Calvo | C. Gellera | Y. Parman | A. Ludolph | M. Robinson | Kuang Lin | K. V. van Eijk | A. Padovani | S. de Jong | J. Grosskreutz | T. Prell | R. Tortelli | K. Morrison | P. Vourc'h | C. Andres | G. Soraru' | M. Sendtner | Jochen H Weishaupt | P. Shaw | A. Pittman | S. Abdulla | S. Pinto | B. Stubendorff | A. Vajda | P. Corcia | Markus Weber | M. Filosto | W. van Rheenen | S. Colville | B. Rogelj | V. V. Van Deerlin | N. Ticozzi | K. Kenna | C. Tiloca | A. Ratti | V. Silani | U. Võsa | L. McCluskey | L. Elman | R. Pasterkamp | M. Kiernan | D. Rowe | M. Koppers | C. Lomen-Hoerth | T. Meyer | I. Blair | G. Nicholson | I. Kurth | C. Hübner | G. Bensimon | R. Swingler | C. Moglia | R. Rojas-García | R. Capozzo | C. Zecca | R. A. van der Spek | Katharine Y. Zhang | C. Payan | L. Mazzini | J. Medić | S. D'alfonso | K. Sidle | S. Millecamps | P. Fratta | Ashley R Jones | R. Pamphlett | A. Malaspina | O. Harschnitz | N. Riva | S. Penco | I. Fogh | C. Lunetta | Perry T C van Doormaal | G. Tazelaar | A. Blokhuis | W. Sproviero | W. Brands | Katarina Vrabec | M. Ravnik-Glavač | L. Leonardis | L. D. Grošelj | J. Mora | M. Polak | C. Drepper | K. Staats | M. Wiedau-Pazos | A. Başak | Ceren Tunca | Hamid Hamzeiy | Milena Radivojkov-Blagojevic | C. Maurel | Safa Saker-Delye | L. Tittmann | A. J. van der Kooi | M. de Visser | R. del Bo | C. Bertolin | V. Pensato | M. Brunetti | B. Muller | Robbert Jan Stuit | E. McCann | J. Fifita | F. Casale | E. Pupillo | Gijs H. P. Tazelaar | Bradley N. Smith | C. Lomen‐Hoerth | Milena Radivojkov-Blagojević | Cristina Cereda | A. Jones | R. J. Pasterkamp | V. V. van Deerlin | R. V. D. van der Spek | A. Uitterlinden | P. T. V. van Doormaal | A. Hofman | P. Shaw | Robert H. Brown | C. Lewis | J. Hardy | R. Rojas‐García | Shuna Colville

[1]  J. Qin,et al.  The NEK1 interactor, C21ORF2, is required for efficient DNA damage repair. , 2015, Acta biochimica et biophysica Sinica.

[2]  T. Wieland,et al.  Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia , 2015, Nature Neuroscience.

[3]  田原 康玄,et al.  生活習慣病とgenome-wide association study , 2015 .

[4]  Brittany N. Lasseigne,et al.  Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways , 2015, Science.

[5]  Noam Soker,et al.  Planetary systems and real planetary nebulae from planet destruction near white dwarfs , 2015, 1502.07513.

[6]  J. Hirschhorn,et al.  Biological interpretation of genome-wide association studies using predicted gene functions , 2015, Nature Communications.

[7]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[8]  J. A. Parker,et al.  Neurodegeneration in C. elegans models of ALS requires TIR-1/Sarm1 immune pathway activation in neurons , 2015, Nature Communications.

[9]  A. Singleton,et al.  Genetic variability in the regulation of gene expression in ten regions of the human brain , 2014, Nature Neuroscience.

[10]  J. Trojanowski,et al.  Myelin oligodendrocyte basic protein and prognosis in behavioral-variant frontotemporal dementia , 2014, Neurology.

[11]  Pieter B. T. Neerincx,et al.  Supplementary Information Whole-genome sequence variation , population structure and demographic history of the Dutch population , 2022 .

[12]  Olivier Delaneau,et al.  Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel , 2014, Nature Communications.

[13]  G. Comi,et al.  A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. , 2014, Human molecular genetics.

[14]  P. Visscher,et al.  Advantages and pitfalls in the application of mixed-model association methods , 2014, Nature Genetics.

[15]  P. Visscher,et al.  Pitfalls of predicting complex traits from SNPs , 2013, Nature Reviews Genetics.

[16]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[17]  N. A. Ramakrishnan,et al.  The SNARE complex in neuronal and sensory cells , 2012, Molecular and Cellular Neuroscience.

[18]  Stephan Ripke,et al.  Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs , 2012, Nature Genetics.

[19]  Matthew C. Kiernan,et al.  Clinical diagnosis and management of amyotrophic lateral sclerosis , 2011, Nature Reviews Neurology.

[20]  Michael Sendtner,et al.  Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis , 2011, Nature Reviews Neurology.

[21]  J. Marchini,et al.  Genotype Imputation with Thousands of Genomes , 2011, G3: Genes | Genomes | Genetics.

[22]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[23]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[24]  J. Turnbull,et al.  Adenylyl Cyclase type 3, a marker of primary cilia, is reduced in primary cell culture and in lumbar spinal cord in situ in G93A SOD1 mice , 2011, BMC Neuroscience.

[25]  Andrew J. Lees,et al.  Identification of common variants influencing risk of the tauopathy Progressive Supranuclear Palsy , 2011, Nature Genetics.

[26]  Ben Chih,et al.  Functional characterization of putative cilia genes by high-content analysis , 2011, Molecular biology of the cell.

[27]  David Heckerman,et al.  Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study , 2010, The Lancet Neurology.

[28]  A. Farmer,et al.  Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study , 2010, The Lancet Neurology.

[29]  A. Al-Chalabi,et al.  An estimate of amyotrophic lateral sclerosis heritability using twin data , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[30]  N. Cox,et al.  Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS , 2010, PLoS genetics.

[31]  Ewout J N Groen,et al.  Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis , 2009, Nature Genetics.

[32]  A. Al-Chalabi,et al.  Amyotrophic lateral sclerosis in an urban setting , 2006, Journal of Neurology.

[33]  G. Abecasis,et al.  Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies , 2006, Nature Genetics.

[34]  A. Al-Chalabi,et al.  Amyotrophic lateral sclerosis in an urban setting: a population based study of inner city London. , 2006, Journal of neurology.

[35]  S. Antonarakis,et al.  Immunochemical characterization of a novel mitochondrially located protein encoded by a nuclear gene within the DFNB8/10 critical region on 21q22.3. , 1997, Biochemical and biophysical research communications.