Spatial and spatio-temporal models with R-INLA.

During the last three decades, Bayesian methods have developed greatly in the field of epidemiology. Their main challenge focusses around computation, but the advent of Markov Chain Monte Carlo methods (MCMC) and in particular of the WinBUGS software has opened the doors of Bayesian modelling to the wide research community. However model complexity and database dimension still remain a constraint. Recently the use of Gaussian random fields has become increasingly popular in epidemiology as very often epidemiological data are characterised by a spatial and/or temporal structure which needs to be taken into account in the inferential process. The Integrated Nested Laplace Approximation (INLA) approach has been developed as a computationally efficient alternative to MCMC and the availability of an R package (R-INLA) allows researchers to easily apply this method. In this paper we review the INLA approach and present some applications on spatial and spatio-temporal data.

[1]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[2]  Patrick Brown,et al.  Spatial modelling of lupus incidence over 40 years with changes in census areas , 2012 .

[3]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[4]  D. Richards,et al.  Understanding uncertainty , 2012, Evidence-Based Dentistry.

[5]  L. Held,et al.  Sensitivity analysis in Bayesian generalized linear mixed models for binary data , 2011 .

[6]  Andrew B. Lawson,et al.  Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology , 2008 .

[7]  Håvard Rue,et al.  Implementing Approximate Bayesian Inference using Integrated Nested Laplace Approximation: a manual for the inla program , 2008 .

[8]  James S. Clark,et al.  Why environmental scientists are becoming Bayesians , 2004 .

[9]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[10]  Alessio Pollice,et al.  Discussing the “big n problem” , 2013, Stat. Methods Appl..

[11]  Michela Cameletti,et al.  Comparing spatio‐temporal models for particulate matter in Piemonte , 2011 .

[12]  D B Dunson,et al.  Commentary: practical advantages of Bayesian analysis of epidemiologic data. , 2001, American journal of epidemiology.

[13]  Edzer J. Pebesma,et al.  Multivariable geostatistics in S: the gstat package , 2004, Comput. Geosci..

[14]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[15]  Håvard Rue,et al.  Direct fitting of dynamic models using integrated nested Laplace approximations - INLA , 2012, Comput. Stat. Data Anal..

[16]  Haavard Rue,et al.  Think continuous: Markovian Gaussian models in spatial statistics , 2011, 1110.6796.

[17]  Andrew Thomas,et al.  The BUGS project: Evolution, critique and future directions , 2009, Statistics in medicine.

[18]  C. Wikle Hierarchical Models in Environmental Science , 2003 .

[19]  H. Rue,et al.  Approximate Bayesian inference for hierarchical Gaussian Markov random field models , 2007 .

[20]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[21]  M. Dolores Ugarte,et al.  Statistical Methods for Spatio-temporal Systems , 2006 .

[22]  J. Møller,et al.  Handbook of Spatial Statistics , 2008 .

[23]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[24]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[25]  S. Richardson,et al.  Interpreting Posterior Relative Risk Estimates in Disease-Mapping Studies , 2004, Environmental health perspectives.

[26]  Sujit K. Sahu,et al.  Hierarchical Bayesian models for space-time air pollution data , 2012 .

[27]  H. Rue,et al.  Spatio-temporal modeling of particulate matter concentration through the SPDE approach , 2012, AStA Advances in Statistical Analysis.

[28]  B. Schrödle A primer on disease mapping and ecological regression using INLA , 2011 .

[29]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[30]  Haavard Rue,et al.  Estimation and extrapolation of time trends in registry data—Borrowing strength from related populations , 2011, 1108.0606.

[31]  Sander Greenland,et al.  Bayesian perspectives for epidemiological research: I. Foundations and basic methods. , 2006, International journal of epidemiology.

[32]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[33]  G. Roberts,et al.  Bayesian analysis for emerging infectious diseases , 2009 .

[34]  J. Kestle Clinical Trials , 2014, World Journal of Surgery.

[35]  S. Finardi,et al.  A deterministic air quality forecasting system for Torino urban area, Italy , 2008, Environ. Model. Softw..

[36]  Kjersti Aas,et al.  Norges Teknisk-naturvitenskapelige Universitet Estimating Stochastic Volatility Models Using Integrated Nested Laplace Approximations Estimating Stochastic Volatility Models Using Integrated Nested Laplace Approximations , 2022 .

[37]  Stephen J. Ganocy,et al.  Bayesian Statistical Modelling , 2002, Technometrics.

[38]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[39]  Alessandro Fasso,et al.  Maximum likelihood estimation of the dynamic coregionalization model with heterotopic data , 2011 .

[40]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[41]  C Pascutto,et al.  Statistical issues in the analysis of disease mapping data. , 2000, Statistics in medicine.

[42]  D. Cocchi,et al.  Hierarchical space-time modelling of PM10 pollution , 2007 .

[43]  David J. Lunn,et al.  The BUGS Book: A Practical Introduction to Bayesian Analysis , 2013 .

[44]  H. Rue,et al.  In order to make spatial statistics computationally feasible, we need to forget about the covariance function , 2012 .

[45]  Bradley P. Carlin,et al.  Bayesian Adaptive Methods for Clinical Trials , 2010 .

[46]  S D.,et al.  Going off grid: Computationally efficient inference for log-Gaussian Cox processes , 2015 .

[47]  Leonhard Held,et al.  Spatio‐temporal disease mapping using INLA , 2011 .

[48]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[49]  A. Riebler,et al.  Bayesian bivariate meta‐analysis of diagnostic test studies using integrated nested Laplace approximations , 2010, Statistics in medicine.

[50]  Leonhard Held,et al.  Using integrated nested Laplace approximations for the evaluation of veterinary surveillance data from Switzerland: a case‐study , 2011 .

[51]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[52]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[53]  P. Guttorp,et al.  Studies in the history of probability and statistics XLIX On the Matérn correlation family , 2006 .

[54]  Gianluca Baio,et al.  Bayesian Methods in Health Economics , 2012 .

[55]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[56]  David Bolin,et al.  Models and Methods for Random Fields in Spatial Statistics with Computational Efficiency from Markov Properties , 2012 .

[57]  Jane L. Harvill Spatio‐temporal processes , 2010 .

[58]  Simon Jackman,et al.  Bayesian Analysis for the Social Sciences , 2009 .

[59]  L Knorr-Held,et al.  Bayesian modelling of inseparable space-time variation in disease risk. , 2000, Statistics in medicine.

[60]  D. Clayton,et al.  Bayesian analysis of space-time variation in disease risk. , 1995, Statistics in medicine.

[61]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .