Multivariate Gabor frames and sampling of entire functions of several variables

[1]  T. Strohmer,et al.  Gabor Analysis and Algorithms , 2012 .

[2]  Peter Rashkov,et al.  Remarks on multivariate Gaussian Gabor frames , 2010, 1008.3517.

[3]  Prashant Parikh A Theory of Communication , 2010 .

[4]  Yurii Lyubarskii,et al.  Gabor (super)frames with Hermite functions , 2008, 0804.4613.

[5]  C. Heil History and Evolution of the Density Theorem for Gabor Frames , 2007 .

[6]  K. Grōchenig Gabor frames without inequalities , 2007, math/0703379.

[7]  Bachir Bekka Square Integrable Representations, von Neumann Algebras and An Application to Gabor Analysis , 2004 .

[8]  K. Seip Interpolation and sampling in spaces of analytic functions , 2004 .

[9]  H. Feichtinger,et al.  Varying the time-frequency lattice of Gabor frames , 2003 .

[10]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[11]  Deguang Han,et al.  The Balian–Low theorem for symplectic lattices in higher dimensions , 2002 .

[12]  T. Strohmer,et al.  Hyperbolic secants yield Gabor frames , 2002, math/0301134.

[13]  M. W. Wong Square-Integrable Representations , 2002 .

[14]  Yurii Lyubarskii,et al.  Convergence and summability of Gabor expansions at the Nyquist density , 1999 .

[15]  H. Feichtinger,et al.  Quantization of TF lattice-invariant operators on elementary LCA groups , 1998 .

[16]  T. Hales Sphere packings, I , 1998, Discret. Comput. Geom..

[17]  T. Strohmer,et al.  Gabor Analysis and Algorithms: Theory and Applications , 1997 .

[18]  Yurii Lyubarskii,et al.  Lectures on entire functions , 1996 .

[19]  I. Daubechies,et al.  Gabor Time-Frequency Lattices and the Wexler-Raz Identity , 1994 .

[20]  D. Walnut,et al.  Differentiation and the Balian-Low Theorem , 1994 .

[21]  Entire and subharmonic functions , 1994 .

[22]  A. Janssen Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .

[23]  Interpolating varieties for weighted spaces of entire functions in $\mathbf{C}^n$ , 1994 .

[24]  Interpolating varieties for weighted spaces of entire functions in Cn , 1994 .

[25]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[26]  Yurii Lyubarskii Frames in the Bargmann space of entire functions , 1992 .

[27]  K. Seip Density theorems for sampling and interpolation in the Bargmann-Fock space I. , 1992, math/9204238.

[28]  Interpolation with discrete sets in Cl , 1992 .

[29]  Interpolation on plane sets in C2 , 1992 .

[30]  K. Gröchenig Describing functions: Atomic decompositions versus frames , 1991 .

[31]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[32]  I. Daubechies,et al.  Frames in the Bargmann Space of Entire Functions , 1988 .

[33]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[34]  P. Lelong,et al.  Entire Functions of Several Complex Variables , 1986 .

[35]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[36]  A. Janssen Gabor representation of generalized functions , 1981 .

[37]  M. Bastiaans,et al.  Gabor's expansion of a signal into Gaussian elementary signals , 1980, Proceedings of the IEEE.

[38]  L. Ronkin,et al.  Introduction to the Theory of Entire Functions of Several Variables , 1974 .

[39]  W. Hayman The Local Growth of Power Series: A Survey of the Wiman-Valiron Method , 1974, Canadian Mathematical Bulletin.

[40]  V. Bargmann,et al.  On the Completeness of Coherent States , 1971 .

[41]  V. Bargmann On a Hilbert space of analytic functions and an associated integral transform part I , 1961 .

[42]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[43]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .