Bernstein von Mises Theorems for Gaussian Regression with increasing number of regressors
暂无分享,去创建一个
[1] C. R. Deboor,et al. A practical guide to splines , 1978 .
[2] Andrew R. Barron,et al. Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.
[3] A. V. D. Vaart. Asymptotic Statistics: Delta Method , 1998 .
[4] D. Freedman. On the Bernstein-von Mises Theorem with Infinite Dimensional Parameters , 1999 .
[5] Subhashis Ghosal,et al. Asymptotic normality of posterior distributions in high-dimensional linear models , 1999 .
[6] S. Ghosal. Asymptotic Normality of Posterior Distributions for Exponential Families when the Number of Parameters Tends to Infinity , 2000 .
[7] A. V. D. Vaart,et al. Convergence rates of posterior distributions , 2000 .
[8] L. Wasserman,et al. Rates of convergence of posterior distributions , 2001 .
[9] Xiaotong Shen. Asymptotic Normality of Semiparametric and Nonparametric Posterior Distributions , 2002 .
[10] A. Tsybakov,et al. Introduction à l'estimation non-paramétrique , 2003 .
[11] Yongdai Kim,et al. A Bernstein–von Mises theorem in the nonparametric right-censoring model , 2004, math/0410083.
[12] Yongdai Kim. The Bernstein–von Mises theorem for the proportional hazard model , 2006, math/0611230.
[13] A. V. D. Vaart,et al. Convergence rates of posterior distributions for non-i.i.d. observations , 2007, 0708.0491.
[14] P. Massart,et al. Concentration inequalities and model selection , 2007 .
[15] S. Boucheron,et al. A Bernstein-Von Mises Theorem for discrete probability distributions , 2008, 0807.2096.
[16] J. Rousseau,et al. BERNSTEIN-VON MISES THEOREM FOR LINEAR FUNCTIONALS OF THE DENSITY , 2009, 0908.4167.
[17] B. Clarke,et al. Reference priors for exponential families with increasing dimension , 2010 .
[18] Dominique Bontemps. Universal Coding on Infinite Alphabets: Exponentially Decreasing Envelopes , 2011, IEEE Transactions on Information Theory.
[19] P. Bickel,et al. The semiparametric Bernstein-von Mises theorem , 2010, 1007.0179.