On $${\alpha }$$α-roughly weighted games

Gvozdeva et al. (Int J Game Theory, doi:10.1007/s00182-011-0308-4, 2013) have introduced three hierarchies for simple games in order to measure the distance of a given simple game to the class of (roughly) weighted voting games. Their third class $${\mathcal {C}}_\alpha $$Cα consists of all simple games permitting a weighted representation such that each winning coalition has a weight of at least $$1$$1 and each losing coalition a weight of at most $$\alpha $$α. For a given game the minimal possible value of $$\alpha $$α is called its critical threshold value. We continue the work on the critical threshold value, initiated by Gvozdeva et al., and contribute some new results on the possible values for a given number of voters as well as some general bounds for restricted subclasses of games. A strong relation between this concept and the cost of stability, i.e. the minimum amount of external payment to ensure stability in a coalitional game, is uncovered.

[1]  Rocco A. Servedio,et al.  Improved Approximation of Linear Threshold Functions , 2009, 2009 24th Annual IEEE Conference on Computational Complexity.

[2]  Dan S. Felsenthal,et al.  Ternary voting games , 1997, Int. J. Game Theory.

[3]  Josep Freixas,et al.  Complete simple games , 1996 .

[4]  J. R. Isbell,et al.  A class of simple games , 1958 .

[5]  William S. Zwicker,et al.  Simple games - desirability relations, trading, pseudoweightings , 1999 .

[6]  John von Neumann,et al.  Chapter X. Simple Games , 2007 .

[7]  Lane A. Hemaspaandra,et al.  Three hierarchies of simple games parameterized by “resource” parameters , 2013, Int. J. Game Theory.

[8]  Josep Freixas,et al.  Dimension of complete simple games with minimum , 2008, Eur. J. Oper. Res..

[9]  Bezalel Peleg,et al.  Voting by Count and Account , 1992 .

[10]  Josep Freixas Bosch,et al.  Weighted games without a unique minimal representation in integers , 2009 .

[11]  Taylor Alan,et al.  Weighted Voting, Multicameral Representation, and Power , 1993 .

[12]  Gerhard J. Woeginger,et al.  On the dimension of simple monotonic games , 2006, Eur. J. Oper. Res..

[13]  Thorsten Koch,et al.  Rapid mathematical programming , 2005 .

[14]  Rocco A. Servedio,et al.  Improved Approximation of Linear Threshold Functions , 2009, Computational Complexity Conference.

[15]  Timo Berthold,et al.  On the computational impact of MIQCP solver components , 2011 .

[16]  J. Brenner,et al.  The Hadamard Maximum Determinant Problem , 1972 .

[17]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[18]  Josep Freixas,et al.  A power analysis of linear games with consensus , 2004, Math. Soc. Sci..

[19]  Timo Berthold,et al.  Extending a CIP framework to solve MIQCPs , 2012 .

[20]  Sascha Kurz,et al.  On the inverse power index problem , 2012, ArXiv.

[21]  Jeffrey S. Rosenschein,et al.  The Cost of Stability in Network Flow Games , 2009, MFCS.

[22]  Adam N. Letchford,et al.  Reformulating mixed-integer quadratically constrained quadratic programs , 2011 .

[23]  Dan S. Felsenthal,et al.  Ternary voting games , 1997, Int. J. Game Theory.

[24]  Josep Freixas,et al.  Weighted voting, abstention, and multiple levels of approval , 2003, Soc. Choice Welf..

[25]  Sascha Kurz,et al.  On minimum sum representations for weighted voting games , 2011, Ann. Oper. Res..

[26]  Ton Storcken Effectivity functions and simple games , 1997, Int. J. Game Theory.

[27]  Yoram Bachrach,et al.  The Least-Core of Threshold Network Flow Games , 2011, MFCS.

[28]  P. Morris Introduction to Game Theory , 1994 .

[29]  Jesús Mario Bilbao,et al.  The distribution of power in the European Constitution , 2007, Eur. J. Oper. Res..

[30]  Tatiana Gvozdeva,et al.  Weighted and Roughly Weighted Simple Games , 2009 .

[31]  Reinhard Selten,et al.  Rational interaction : essays in honor of John C. Harsanyi , 1992 .

[32]  Daniel Granot,et al.  On Some Network Flow Games , 1992, Math. Oper. Res..

[33]  Eitan Zemel,et al.  Totally Balanced Games and Games of Flow , 1982, Math. Oper. Res..

[34]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[35]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[36]  Jörg Rothe,et al.  The Cost of Stability in Coalitional Games , 2009, SAGT.