Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields

This paper presents a new approach to the use of Gibbs distributions (GD) for modeling and segmentation of noisy and textured images. Specifically, the paper presents random field models for noisy and textured image data based upon a hierarchy of GD. It then presents dynamic programming based segmentation algorithms for noisy and textured images, considering a statistical maximum a posteriori (MAP) criterion. Due to computational concerns, however, sub-optimal versions of the algorithms are devised through simplifying approximations in the model. Since model parameters are needed for the segmentation algorithms, a new parameter estimation technique is developed for estimating the parameters in a GD. Finally, a number of examples are presented which show the usefulness of the Gibbsian model and the effectiveness of the segmentation algorithms and the parameter estimation procedures.

[1]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[2]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[3]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[4]  Laveen N. Kanal,et al.  Classification of binary random patterns , 1965, IEEE Trans. Inf. Theory.

[5]  A. Cohen,et al.  Estimation in Mixtures of Two Normal Distributions , 1967 .

[6]  F. Spitzer Markov Random Fields and Gibbs Ensembles , 1971 .

[7]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[8]  C. D. McGillem,et al.  Machine processing of remotely sensed data , 1975 .

[9]  JOHN w. WOODS,et al.  Kalman filtering in two dimensions , 1977, IEEE Trans. Inf. Theory.

[10]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[11]  M. Hassner,et al.  The use of Markov Random Fields as models of texture , 1980 .

[12]  F. R. Hansen,et al.  Image segmentation using simple markov field models , 1982, Comput. Graph. Image Process..

[13]  R. Chellappa,et al.  Digital image restoration using spatial interaction models , 1982 .

[14]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Donald Geman,et al.  Application of the Gibbs distribution to image segmentation , 1984, ICASSP.

[17]  Donald Geman,et al.  Bayes Smoothing Algorithms for Segmentation of Binary Images Modeled by Markov Random Fields , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  David B. Cooper,et al.  Real Time Textured-Image Segmentation Based On Noncausal Markovian Random Field Models , 1984, Other Conferences.

[19]  Haluk Derin,et al.  A new approach to parameter estimation for Gibbs random fields , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[20]  Haluk Derin,et al.  The Use of Gibbs Distributions In Image Processing , 1986 .

[21]  H. Derin,et al.  Segmentation of textured images using Gibbs random fields , 1986 .

[22]  Haluk Derin,et al.  Estimating Components of Univariate Gaussian Mixtures Using Prony's Method , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .