Approximation of the Invariant Measure with an Euler Scheme for Stochastic PDEs Driven by Space-Time White Noise

In this article, we consider a stochastic PDE of parabolic type, driven by a space-time white-noise, and its numerical discretization in time with a semi-implicit Euler scheme. When the nonlinearity is assumed to be bounded, then a dissipativity assumption is satisfied, which ensures that the SDPE admits a unique invariant probability measure, which is ergodic and strongly mixing—with exponential convergence to equilibrium. Considering test functions of class $\mathcal{C}^2$, bounded and with bounded derivatives, we prove that we can approximate this invariant measure using the numerical scheme, with order 1/2 with respect to the time step.

[1]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[2]  Jonathan C. Mattingly Exponential Convergence for the Stochastically Forced Navier-Stokes Equations and Other Partially Dissipative Dynamics , 2002 .

[3]  E. Blom,et al.  From the Russian , 1953 .

[4]  D. Talay,et al.  Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .

[5]  Jessica G. Gaines,et al.  Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations , 2001, Math. Comput..

[6]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[7]  Coupling and Invariant Measures for the Heat Equation with Noise , 1993 .

[8]  M. Lefebvre Applied probability and statistics , 2006 .

[9]  K. Elworthy ERGODICITY FOR INFINITE DIMENSIONAL SYSTEMS (London Mathematical Society Lecture Note Series 229) By G. Da Prato and J. Zabczyk: 339 pp., £29.95, LMS Members' price £22.47, ISBN 0 521 57900 7 (Cambridge University Press, 1996). , 1997 .

[10]  E. Hausenblas Approximation for Semilinear Stochastic Evolution Equations , 2003 .

[11]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[12]  Arnaud Debussche,et al.  Weak approximation of stochastic partial differential equations: the nonlinear case , 2008, Math. Comput..

[13]  Jacques Printems,et al.  Weak order for the discretization of the stochastic heat equation , 2007, Math. Comput..

[14]  I. Gyöngy Lattice Approximations for Stochastic Quasi-Linear Parabolic Partial Differential Equations driven by Space-Time White Noise II , 1999 .

[15]  Andrew M. Stuart,et al.  Convergence of Numerical Time-Averaging and Stationary Measures via Poisson Equations , 2009, SIAM J. Numer. Anal..

[16]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[17]  T. Lindvall Lectures on the Coupling Method , 1992 .

[18]  Gianmario Tessitore,et al.  Ergodic BSDEs under weak dissipative assumptions , 2010, 1004.1571.

[19]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[20]  Jacques Printems,et al.  On the discretization in time of parabolic stochastic partial differential equations , 2001, Monte Carlo Methods Appl..

[21]  J. Zabczyk,et al.  Ergodicity for Infinite Dimensional Systems: Invariant measures for stochastic evolution equations , 1996 .

[22]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[23]  D. Nualart,et al.  Implicit Scheme for Stochastic Parabolic Partial Diferential Equations Driven by Space-Time White Noise , 1997 .

[24]  D. Talay Second-order discretization schemes of stochastic differential systems for the computation of the invariant law , 1990 .

[25]  G. Milstein Numerical Integration of Stochastic Differential Equations , 1994 .

[26]  J. B. Walsh,et al.  Finite Element Methods for Parabolic Stochastic PDE’s , 2005 .

[27]  D. Talay Discrétisation d'une équation différentielle stochastique et calcul approché d'espérances de fonctionnelles de la solution , 1986 .

[28]  I. Gyöngy Lattice Approximations for Stochastic Quasi-Linear Parabolic Partial Differential Equations Driven by Space-Time White Noise I , 1998 .

[29]  Armen Shirikyan,et al.  A Coupling Approach¶to Randomly Forced Nonlinear PDE's. I , 2001 .

[30]  Marta Sanz-Solé,et al.  Malliavin Calculus with Applications to Stochastic Partial Differential Equations , 2005 .

[31]  Werner Römisch,et al.  Numerical Solution of Stochastic Differential Equations (Peter E. Kloeden and Eckhard Platen) , 1995, SIAM Rev..

[32]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[33]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[34]  R. Seydel Numerical Integration of Stochastic Differential Equations , 2004 .

[35]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .