The pleistochrome: optimal opponent codes for natural colours

[1]  Barry B. Lee,et al.  Macaque ganglion cell responses to stimuli that elicit hyperacuity in man: detection of small displacements , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  E N Pugh,et al.  Red/Green color opponency at detection threshold. , 1983, Science.

[3]  Kenkichi Fukurotani,et al.  Color information coding of horizontal‐cell responses in fish retina , 1982 .

[4]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[5]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[6]  C. M. Cicerone,et al.  Opponent-process additivity--I: red-green equilibria. , 1974, Vision research.

[7]  Kristian Donner,et al.  Noise and the absolute thresholds of cone and rod vision , 1992, Vision Research.

[8]  G. Müller Darstellung und Erklärung der verschiedenen Typen der Farbenblindheit : nebst Erörterung der Funktion des Stäbchenapparates sowie des Farbensinns der Bienen und der Fische , 1924 .

[9]  M W Levine,et al.  Variability in responses of retinal ganglion cells. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[10]  D. Ruderman,et al.  Statistics of cone responses to natural images: implications for visual coding , 1998 .

[11]  G. Fechner Elemente der Psychophysik , 1998 .

[12]  H B Barlow,et al.  Optic nerve impulses and Weber's law. , 1965, Cold Spring Harbor symposia on quantitative biology.

[13]  Thomas Wachtler,et al.  A simple model of human foveal ganglion cell responses to hyperacuity stimuli , 1996, Journal of Computational Neuroscience.

[14]  Cyril Burt GUSTAV THEODOR FECHNER ELEMENTE DER PSYCHOPHYSIK 1860 , 1960 .

[15]  R. Shapley,et al.  The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. Macleod,et al.  Blue-sensitive cones do not contribute to luminance. , 1980, Journal of the Optical Society of America.

[17]  Klaus Schulten,et al.  Topology-conserving maps for learning visuo-motor-coordination , 1989, Neural Networks.

[18]  D. Baylor,et al.  Photoreceptor signals and vision. Proctor lecture. , 1987, Investigative ophthalmology & visual science.

[19]  R. M. Boynton,et al.  Chromaticity diagram showing cone excitation by stimuli of equal luminance. , 1979, Journal of the Optical Society of America.

[20]  M W Levine,et al.  Variability of responses of cat retinal ganglion cells , 1992, Visual Neuroscience.

[21]  L. Arend Spatial differential and integral operations in human vision: implications of stabilized retinal image fading. , 1973, Psychological review.

[22]  Robert M. Boynton,et al.  Design for an Eye , 1980 .

[23]  Zhaoping Li,et al.  Understanding Retinal Color Coding from First Principles , 1992, Neural Computation.

[24]  T. R. J. Bossomaier,et al.  Human cone-pigment spectral sensitivities and the reflectances of natural surfaces , 1992, Biological Cybernetics.

[25]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[26]  D. Macleod,et al.  Spectral sensitivities of the human cones. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  Brian E. Blank,et al.  The Pleasures of Counting , 1998 .

[28]  J. Mollon,et al.  Dichromats detect colour-camouflaged objects that are not detected by trichromats , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  Mary Hayhoe,et al.  The gap effect: Chromatic and achromatic visual discrimination as affected by field separation , 1977 .

[30]  M. Mcmahon,et al.  Dichromatic color vision at high light levels: Red/green discrimination using the blue-sensitive mechanism , 1998, Vision Research.

[31]  K. J. Craik The effect of adaptation on differential brightness discrimination , 1938, The Journal of physiology.

[32]  K. Purpura,et al.  Response variability in retinal ganglion cells of primates. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Naoya Yokoyama,et al.  Neural Coding of Color , 2004 .

[34]  R. L. Valois,et al.  A multi-stage color model , 1993, Vision Research.

[35]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  D. Noton,et al.  Eye movements and visual perception. , 1971, Scientific American.

[37]  J. Krauskopf,et al.  Color discrimination and adaptation , 1992, Vision Research.

[38]  J. Allman,et al.  Cytochrome oxidase and functional coding in primate striate cortex: a hypothesis. , 1990, Cold Spring Harbor symposia on quantitative biology.

[39]  K. D. De Valois,et al.  A multi-stage color model. , 1993, Vision research.

[40]  William Bialek,et al.  Reliability and information transmission in spiking neurons , 1992, Trends in Neurosciences.

[41]  J. Pokorny,et al.  How surrounds affect chromaticity discrimination. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[42]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[43]  G. Buchsbaum,et al.  Trichromacy, opponent colours coding and optimum colour information transmission in the retina , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[44]  R. Gregory,et al.  Border Locking and the Café Wall Illusion , 1979, Perception.

[45]  H. Barlow,et al.  Responses to single quanta of light in retinal ganglion cells of the cat. , 1971, Vision research.

[46]  D. Macleod,et al.  Color appearance depends on the variance of surround colors , 1997, Current Biology.

[47]  J. Pokorny,et al.  Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[48]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[49]  D Marr,et al.  The computation of lightness by the primate retina. , 1974, Vision research.

[50]  S. Laughlin,et al.  Matching Coding to Scenes to Enhance Efficiency , 1983 .

[51]  Robert M. Boynton,et al.  Chromatic difference steps of moderate size measured along theoretically critical axes , 1980 .

[52]  C. F. Stromeyer,et al.  Colour is what the eye sees best , 1993, Nature.