Microstructure and ultrahigh strength of nanoscale Cu/Nb multilayers

Abstract The microstructure and mechanical properties of Cu/Nb multilayers were investigated by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and nanoindentation. Ultrahigh strength of 3.27 GPa is achieved at the smallest layer thickness of 2.5 nm, which agrees well with the theoretical prediction based on the deformation mechanism of crossing of dislocations across interfaces. After that, the strength decreases with the increasing layer thickness and the transition of the deformation mechanism to confined layer slip occurs at the layer thickness of 6.5 nm. Additionally, strength of the Cu/Nb multilayers increases with increasing loading strain rate because of enhanced strain hardening.

[1]  Frans Spaepen,et al.  Interfaces and stresses in thin films , 2000 .

[2]  Richard G. Hoagland,et al.  On the strengthening effects of interfaces in multilayer fee metallic composites , 2002 .

[3]  Amit Misra,et al.  Tensile behavior of 40 nm Cu/Nb nanoscale multilayers , 2008 .

[4]  Amit Misra,et al.  Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites , 2008 .

[5]  C. C. Wong,et al.  Strain rate sensitivity and Hall–Petch behavior of ultrafine-grained gold wires , 2008 .

[6]  Kiyoshi Yokogawa,et al.  Surface oxidation of a Nb(100) single crystal by scanning tunneling microscopy , 2002 .

[7]  John G Swadener,et al.  Nanostructured Cu/Nb multilayers subjected to helium ion-irradiation , 2007 .

[8]  I. Schuller New class of layered materials , 1980 .

[9]  Charles Feldman,et al.  Distinguishing thin film and substrate contributions in microindentation hardness measurements , 1990 .

[10]  F. Zeng,et al.  Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers , 2007 .

[11]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[12]  Ioannis Chasiotis,et al.  Strain rate effects on the mechanical behavior of nanocrystalline Au films , 2007 .

[13]  Yun-Che Wang,et al.  Fatigue properties of nanoscale Cu/Nb multilayers , 2006 .

[14]  B. Bhushan,et al.  A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications , 2002 .

[15]  R. Hoagland,et al.  Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films , 2005 .

[16]  W. Münz,et al.  Structure and mechanical properties of CrN/TiN multilayer coatings prepared by a combined HIPIMS/UBMS deposition technique , 2008 .

[17]  R. Hoagland,et al.  Mechanics of nanoscale metallic multilayers: From atomic-scale to micro-scale , 2009 .

[18]  F. Zeng,et al.  Microstructure and mechanical properties of nanoscale Cu/Ni multilayers , 2010 .

[19]  William D. Nix,et al.  Effects of the substrate on the determination of thin film mechanical properties by nanoindentation , 2002 .

[20]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[21]  A. Sergueeva,et al.  High-temperature mechanical behavior/microstructure correlation of Cu/Nb nanoscale multilayers , 2008 .

[22]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[23]  Amit Misra,et al.  Structure and mechanical properties of Cu-X (X = Nb,Cr,Ni) nanolayered composites , 1998 .

[24]  F. Zeng,et al.  Size dependence of creep behavior in nanoscale Cu/Co multilayer thin films , 2010 .

[25]  Amit Misra,et al.  Arrest of He bubble growth in Cu–Nb multilayer nanocomposites , 2008 .

[26]  K. Lu,et al.  Hardness and strain rate sensitivity of nanocrystalline Cu , 2006 .

[27]  R. Hoagland,et al.  Room-temperature dislocation climb in metallic interfaces , 2009 .

[28]  Minwei Xu,et al.  Dependence of strain rate sensitivity upon deformed microstructures in nanocrystalline Cu , 2010 .

[29]  Amit Misra,et al.  Rolling textures in nanoscale Cu/Nb multilayers , 2003 .

[30]  C. Henager,et al.  Slip resistance of interfaces and the strength of metallic multilayer composites , 2004 .

[31]  J. Hirth,et al.  Atomistic modeling of the interaction of glide dislocations with “weak” interfaces , 2008 .

[32]  M. Demkowicz,et al.  The multiscale modeling of plastic deformation in metallic nanolayered composites , 2008 .

[33]  T. P. Weihs,et al.  Creep deformation mechanisms in fine-grained niobium , 2008 .

[34]  Amit Misra,et al.  Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites , 2005 .

[35]  M. Fivel,et al.  Some Investigations on the Effect of Layer Thickness in Multilayer Metal Composites on Mechanical Properties , 2001 .

[36]  F. Spaepen,et al.  Simple model for interface stresses with application to misfit dislocation generation in epitaxial thin films , 2000 .

[37]  Guang-Ping Zhang,et al.  Comparative investigation of strength and plastic instability in Cu/Au and Cu/Cr multilayers by indentation , 2009 .

[38]  Mabao Liu,et al.  Scale dependent plastic deformation of nanomultilayers with competitive effects of interphase boundary and grain boundary , 2008 .

[39]  Amit Misra,et al.  Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites , 2005 .