A decision procedure for propositional projection temporal logic with infinite models

This paper investigates the satisfiability of Propositional Projection Temporal Logic (PPTL) with infinite models. A decision procedure for PPTL formulas is given. To this end, Normal Form (NF) and Labeled Normal Form Graph (LNFG) for PPTL formulas are defined, and algorithms for transforming a formula to its normal form and constructing the LNFG for the given formula are presented. Further, the finiteness of LNFGs is proved in details. Moreover, the decision procedure is extended to check the satisfiability of the formulas of Propositional Interval Temporal Logic. In addition, examples are also given to illustrate how the decision procedure works.

[1]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[2]  S. Engell Modelling and analysis of hybrid systems , 1998 .

[3]  Ben C. Moszkowski,et al.  Executing temporal logic programs , 1986, Seminar on Concurrency.

[4]  Zhen-Hua Duan Erratum to A framed temporal logic programming language , 2008, Journal of Computer Science and Technology.

[5]  Maciej Koutny,et al.  Projection in Temporal Logic Programming , 1994, LPAR.

[6]  M Holcombe,et al.  A logic for biological systems. , 2000, Bio Systems.

[7]  Fred Krögr Temporal Logic Of Programs , 1987 .

[8]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[9]  Fred Kröger Temporal Semantics of Programs , 1987 .

[10]  Amir Pnueli,et al.  A Choppy Logic , 1986, LICS.

[11]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..

[12]  Zhenhua Duan,et al.  Model Checking Propositional Projection Temporal Logic Based on SPIN , 2007, ICFEM.

[13]  Zhen-HuaDuan,et al.  A Framed Temporal Logic Programming Language , 2004 .

[14]  Zhenhua Duan,et al.  An extended interval temporal logic and a framing technique for temporal logic programming , 1996 .

[15]  Ben C. Moszkowski,et al.  A complete axiomatization of interval temporal logic with infinite time , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[16]  Howard Bowman,et al.  A Tableau Method for Interval Temporal Logic with Projection , 1998, TABLEAUX.

[17]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[18]  Zohar Manna,et al.  A Hardware Semantics Based on Temporal Intervals , 1983, ICALP.

[19]  Benjamin Charles Moszkowski Reasoning about Digital Circuits , 1983 .

[20]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[21]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[22]  David Harel,et al.  Process Logic: Expressiveness, Decidability, Completeness , 1980, FOCS.

[23]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[24]  Hanpin Wang,et al.  Temporal Logics over Infinite Intervals , 1999 .

[25]  Shinji Kono,et al.  A Combination of Clausal and Non Clausal Temporal Logic Programs , 1993, Executable Modal and Temporal Logics.

[26]  Jozef Gruska Foundations of Computing , 1997 .

[27]  Joseph Y. Halpern,et al.  Equations between regular terms and an application to process logic , 1981, STOC '81.

[28]  C. A. R. Hoare,et al.  A Calculus of Durations , 1991, Inf. Process. Lett..

[29]  Barbara Paech,et al.  Gentzen-Systems for Propositional Temporal Logics , 1988, CSL.

[30]  Howard Bowman,et al.  A Decision Procedure and Complete Axiomatization of Finite Interval Temporal Logic with Projection , 2003, J. Log. Comput..

[31]  G. Winskel The formal semantics of programming languages , 1993 .

[32]  Maciej Koutny,et al.  Semantics of Framed Temporal Logic Programs , 2005, ICLP.

[33]  Ben C. Moszkowski,et al.  Compositional reasoning about projected and infinite time , 1995, Proceedings of First IEEE International Conference on Engineering of Complex Computer Systems. ICECCS'95.

[34]  Bruno Dutertre,et al.  Complete proof systems for first order interval temporal logic , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[35]  Joseph Y. Halpern,et al.  Equations Between Regular Terms and an Application to Process Logic , 1985, SIAM J. Comput..