Closed-Loop Dynamic Parameter Identification of Robot Manipulators Using Modified Fourier Series:

This paper concerns the problem of dynamic parameter identification of robot manipulators and proposes a closed-loop identification procedure using modified Fourier series (MFS) as exciting trajectories. First, a static continuous friction model is involved to model joint friction for realizable friction compensation in controller design. Second, MFS satisfying the boundary conditions are firstly designed as periodic exciting trajectories. To minimize the sensitivity to measurement noise, the coefficients of MFS are optimized according to the condition number criterion. Moreover, to obtain accurate parameter estimates, the maximum likelihood estimation (MLE) method considering the influence of measurement noise is adopted. The proposed identification procedure has been implemented on the first three axes of the QIANJIANG-I 6-DOF robot manipulator. Experiment results verify the effectiveness of the proposed approach, and comparison between identification using MFS and that using finite Fourier series (FFS)...

[1]  Jan Swevers,et al.  Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..

[2]  M. Indri,et al.  Rapid Prototyping of a Model-Based Control With Friction Compensation for a Direct-Drive Robot , 2006, IEEE/ASME Transactions on Mechatronics.

[3]  Christopher G. Atkeson,et al.  Estimation of Inertial Parameters of Manipulator Loads and Links , 1986 .

[4]  Brian Armstrong,et al.  On Finding Exciting Trajectories for Identification Experiments Involving Systems with Nonlinear Dynamics , 1989, Int. J. Robotics Res..

[5]  Vicente Mata,et al.  A comparison between direct and indirect dynamic parameter identification methods in industrial robots , 2006, Robotica.

[6]  Maarten Steinbuch,et al.  Modeling and identification for high-performance robot control: an RRR-robotic arm case study , 2004, IEEE Transactions on Control Systems Technology.

[7]  J. S.,et al.  EXPERIMENTAL ROBOT IDENTIFICATION USING OPTIMISED PERIODIC TRAJECTORIES , 1996 .

[8]  Zafer Bingul,et al.  Dynamic identification of Staubli RX-60 robot using PSO and LS methods , 2011, Expert Syst. Appl..

[9]  Wisama Khalil,et al.  Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..

[10]  Antonella Ferrara,et al.  MIMO Closed Loop Identification of an Industrial Robot , 2011, IEEE Transactions on Control Systems Technology.

[11]  Pasquale Chiacchio,et al.  A systematic procedure for the identification of dynamic parameters of robot manipulators , 1999, Robotica.

[12]  Pradeep K. Khosla Categorization of parameters in the dynamic robot model , 1989, IEEE Trans. Robotics Autom..

[13]  Shir-Kuan Lin,et al.  Minimal linear combinations of the inertia parameters of a manipulator , 1995, IEEE Trans. Robotics Autom..

[14]  Jun Wu,et al.  Review: An overview of dynamic parameter identification of robots , 2010 .

[15]  A. Ferrara,et al.  MIMO identification with optimal experiment design for rigid robot manipulators , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[16]  Jan Swevers,et al.  Experimental robot identification using optimized periodic trajectories , 1994 .

[17]  Henrik Gordon Petersen,et al.  A new method for estimating parameters of a dynamic robot model , 2001, IEEE Trans. Robotics Autom..

[18]  T. Brogårdh,et al.  Robot Control Overview: An Industrial Perspective , 2009 .

[19]  Luc Baron,et al.  A new approach to the dynamic parameter identification of robotic manipulators , 2010, Robotica.