Convergence and Optimal Complexity of Adaptive Finite Element Methods

In this paper, we study adaptive finite element approximations in a perturbation framework, which makes use of the existing adaptive finite element analysis of a linear symmetric elliptic problem. We prove the convergence and complexity of adaptive finite element methods for a class of elliptic partial differential equations. For illustration, we apply the general approach to obtain the convergence and complexity of adaptive finite element methods for a nonsymmetric problem, a nonlinear problem as well as an unbounded coefficient eigenvalue problem.

[1]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[2]  Gong,et al.  FINITE ELEMENT APPROXIMATIONS FOR SCHR ¨ ODINGER EQUATIONS WITH APPLICATIONS TO ELECTRONIC STRUCTURE COMPUTATIONS * , 2008 .

[3]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[4]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[5]  White,et al.  Finite-element method for electronic structure. , 1989, Physical review. B, Condensed matter.

[6]  Stefano Giani,et al.  A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..

[7]  T. Beck Real-space mesh techniques in density-functional theory , 2000, cond-mat/0006239.

[8]  M. Scheffler,et al.  Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory , 1998, cond-mat/9807418.

[9]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[10]  Petr Knobloch,et al.  The P1mod Element: A New Nonconforming Finite Element for Convection-Diffusion Problems , 2003, SIAM J. Numer. Anal..

[11]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[12]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[13]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[14]  Jinchao Xu,et al.  Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..

[15]  Jinchao Xu,et al.  Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .

[16]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[17]  Jinchao Xu,et al.  Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations for Nonlinear Problems , 2001, Adv. Comput. Math..

[18]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[19]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[20]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[21]  Michael J. Holst,et al.  The Finite Element Approximation of the Nonlinear Poisson-Boltzmann Equation , 2007, SIAM J. Numer. Anal..

[22]  G. P. Srivastava CORRIGENDUM: Broyden's method for self-consistent field convergence acceleration , 1984 .

[23]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[24]  A. Zhou MULTI-LEVEL ADAPTIVE CORRECTIONS IN FINITE DIMENSIONAL APPROXIMATIONS , 2009 .

[25]  Eduardo M. Garau,et al.  Convergence of adaptive finite element methods for eigenvalue problems , 2008, 0803.0365.

[26]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[27]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[28]  Kunibert G. Siebert,et al.  A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .