Nasopharyngeal carcinoma MHC region deep sequencing identifies HLA and novel non-HLA TRIM31 and TRIM39 loci

[1]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[2]  Li Dong Wang,et al.  BRCA2 loss‐of‐function germline mutations are associated with esophageal squamous cell carcinoma risk in Chinese , 2020, International journal of cancer.

[3]  F. Greten,et al.  Inflammation and Cancer: Triggers, Mechanisms, and Consequences. , 2019, Immunity.

[4]  P. Visscher,et al.  Genome-wide association study of medication-use and associated disease in the UK Biobank , 2019, Nature Communications.

[5]  W. Xiong,et al.  HCP5 is a SMAD3-responsive long non-coding RNA that promotes lung adenocarcinoma metastasis via miR-203/SNAI axis , 2019, Theranostics.

[6]  A. Auton,et al.  Genome wide analysis for mouth ulcers identifies associations at immune regulatory loci , 2019, Nature Communications.

[7]  Jonathan P. Beauchamp,et al.  Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences , 2019, Nature Genetics.

[8]  David Haussler,et al.  The UCSC Genome Browser database: 2019 update , 2018, Nucleic Acids Res..

[9]  Chi Keung Chan,et al.  Establishment and characterization of new tumor xenografts and cancer cell lines from EBV-positive nasopharyngeal carcinoma , 2018, Nature Communications.

[10]  W. Xue,et al.  Fine‐mapping of HLA class I and class II genes identified two independent novel variants associated with nasopharyngeal carcinoma susceptibility , 2018, Cancer medicine.

[11]  Michiel van Gent,et al.  TRIM Proteins and Their Roles in Antiviral Host Defenses. , 2018, Annual review of virology.

[12]  A. Jemal,et al.  Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries , 2018, CA: a cancer journal for clinicians.

[13]  Xiaomin Ma,et al.  Tripartite motif 31 promotes resistance to anoikis of hepatocarcinoma cells through regulation of p53‐AMPK axis , 2018, Experimental cell research.

[14]  Stuart J. Ritchie,et al.  Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function , 2018, Nature Communications.

[15]  Yuntao Guo,et al.  Oncogenic TRIM31 confers gemcitabine resistance in pancreatic cancer via activating the NF-κB signaling pathway , 2018, Theranostics.

[16]  Heewook Lee,et al.  Kourami: graph-guided assembly for novel human leukocyte antigen allele discovery , 2018, Genome Biology.

[17]  Y. Zhang,et al.  TRIM31 is upregulated in hepatocellular carcinoma and promotes disease progression by inducing ubiquitination of TSC1–TSC2 complex , 2018, Oncogene.

[18]  B. Zhang,et al.  TRIM31 regulates chronic inflammation via NF-κB signal pathway to promote invasion and metastasis in colorectal cancer. , 2018, American journal of translational research.

[19]  A. Chiang,et al.  Therapeutic Strategies against Epstein-Barr Virus-Associated Cancers Using Proteasome Inhibitors , 2017, Viruses.

[20]  Cisca Wijmenga,et al.  The MHC locus and genetic susceptibility to autoimmune and infectious diseases , 2017, Genome Biology.

[21]  Xueer Wang,et al.  The ubiquitin E3 ligase TRIM31 promotes aggregation and activation of the signaling adaptor MAVS through Lys63-linked polyubiquitination , 2016, Nature Immunology.

[22]  Jing Zhao,et al.  The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3 , 2016, Nature Communications.

[23]  V. Lee,et al.  Whole-exome sequencing identifies multiple loss-of-function mutations of NF-κB pathway regulators in nasopharyngeal carcinoma , 2016, Proceedings of the National Academy of Sciences.

[24]  N. Eriksson,et al.  Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections , 2016, Nature Communications.

[25]  W. Jia,et al.  An extended genome-wide association study identifies novel susceptibility loci for nasopharyngeal carcinoma. , 2016, Human molecular genetics.

[26]  Huanming Yang,et al.  Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease , 2016, Nature Genetics.

[27]  Chengdong Zhang,et al.  The HLA-DRB1 allele polymorphisms and nasopharyngeal carcinoma , 2016, Tumor Biology.

[28]  Edwin P Hui,et al.  Nasopharyngeal carcinoma , 2016, The Lancet.

[29]  P. Sham,et al.  Whole-exome sequencing identifies MST1R as a genetic susceptibility gene in nasopharyngeal carcinoma , 2016, Proceedings of the National Academy of Sciences.

[30]  Steven G E Marsh,et al.  The IPD-IMGT/HLA Database - New developments in reporting HLA variation. , 2016, Human immunology.

[31]  Xiaowei Zhan,et al.  RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data , 2016, Bioinform..

[32]  Yang Yang,et al.  Upregulated TRIM29 promotes proliferation and metastasis of nasopharyngeal carcinoma via PTEN/AKT/mTOR signal pathway , 2016, Oncotarget.

[33]  S. Fukuda,et al.  TRIM39 negatively regulates the NFκB-mediated signaling pathway through stabilization of Cactin , 2016, Cellular and Molecular Life Sciences.

[34]  J. Kere,et al.  Genome‐wide association study identifies new susceptibility loci for cutaneous lupus erythematosus , 2015, Experimental dermatology.

[35]  W. Tian,et al.  Sequence-based typing of HLA-A gene in 930 patients with nasopharyngeal carcinoma in Hunan province, southern China. , 2015, Tissue antigens.

[36]  V. Lee,et al.  Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma , 2015 .

[37]  Yusuke Nakamura,et al.  HLA‐A SNPs and amino acid variants are associated with nasopharyngeal carcinoma in Malaysian Chinese , 2014, International journal of cancer.

[38]  D. Kwong,et al.  Multigene pathway‐based analyses identify nasopharyngeal carcinoma risk associations for cumulative adverse effects of TERT‐CLPTM1L and DNA double‐strand breaks repair , 2014, International journal of cancer.

[39]  Benjamin Schubert,et al.  OptiType: precision HLA typing from next-generation sequencing data , 2014, Bioinform..

[40]  Y. Okada,et al.  Predicting HLA alleles from high-resolution SNP data in three Southeast Asian populations. , 2014, Human molecular genetics.

[41]  Chi Man Tsang,et al.  Efficient Immortalization of Primary Nasopharyngeal Epithelial Cells for EBV Infection Study , 2013, PloS one.

[42]  Z. Kutalik,et al.  Comparative genetic analyses point to HCP5 as susceptibility locus for HCV-associated hepatocellular carcinoma. , 2013, Journal of hepatology.

[43]  H. Inoko,et al.  TRIM39R, but not TRIM39B, regulates type I interferon response. , 2013, Biochemical and biophysical research communications.

[44]  Buhm Han,et al.  Imputing Amino Acid Polymorphisms in Human Leukocyte Antigens , 2013, PloS one.

[45]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[46]  S. Kornbluth,et al.  Ubiquitylation of p53 by the APC/C inhibitor Trim39 , 2012, Proceedings of the National Academy of Sciences.

[47]  M. Carrington,et al.  The Principal Genetic Determinants for Nasopharyngeal Carcinoma in China Involve the HLA Class I Antigen Recognition Groove , 2012, PLoS genetics.

[48]  S. Kornbluth,et al.  The Trim39 ubiquitin ligase inhibits APC/CCdh1-mediated degradation of the Bax activator MOAP-1 , 2012, The Journal of Cell Biology.

[49]  W. Jia,et al.  Familial and large-scale case-control studies identify genes associated with nasopharyngeal carcinoma. , 2012, Seminars in cancer biology.

[50]  A. Hildesheim,et al.  Genetic predisposition factors and nasopharyngeal carcinoma risk: a review of epidemiological association studies, 2000-2011: Rosetta Stone for NPC: genetics, viral infection, and other environmental factors. , 2012, Seminars in cancer biology.

[51]  Kai-Ping Chang,et al.  A gender-specific association of CNV at 6p21.3 with NPC susceptibility. , 2011, Human molecular genetics.

[52]  H. Inoko,et al.  TRIM39 and RNF39 are associated with Behçet's disease independently of HLA-B∗51 and -A∗26. , 2010, Biochemical and Biophysical Research Communications - BBRC.

[53]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[54]  E. Liu,et al.  A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci , 2010, Nature Genetics.

[55]  M. Carrington,et al.  Haplotype-dependent HLA susceptibility to nasopharyngeal carcinoma in a Southern Chinese population , 2010, Genes and Immunity.

[56]  M. Carrington,et al.  Association of human leukocyte antigens with nasopharyngeal carcinoma in high-risk multiplex families in Taiwan. , 2009, Human immunology.

[57]  Ken Chen,et al.  VarScan: variant detection in massively parallel sequencing of individual and pooled samples , 2009, Bioinform..

[58]  Ngan-Ming Tsang,et al.  Genome-wide association study reveals multiple nasopharyngeal carcinoma-associated loci within the HLA region at chromosome 6p21.3. , 2009, American journal of human genetics.

[59]  Yusuke Nakamura,et al.  A genome-wide association study identifies ITGA9 conferring risk of nasopharyngeal carcinoma , 2009, Journal of Human Genetics.

[60]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[61]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[62]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[63]  H. Romdhane,et al.  Association of MICA-129 polymorphism with nasopharyngeal cancer risk in a Tunisian population. , 2009, Human immunology.

[64]  T. Economopoulos,et al.  HLA Class II Alleles and the Presence of Circulating Epstein-Barr Virus DNA in Greek Patients with Nasopharyngeal Carcinoma , 2008, Strahlentherapie und Onkologie.

[65]  B. Browning,et al.  Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. , 2007, American journal of human genetics.

[66]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[67]  Jacques Fellay,et al.  A Whole-Genome Association Study of Major Determinants for Host Control of HIV-1 , 2007, Science.

[68]  F. Marincola,et al.  Associations between HLA Class I alleles and the prevalence of nasopharyngeal carcinoma (NPC) among Tunisians , 2007, Journal of Translational Medicine.

[69]  Ya Cao,et al.  Gender-specific associations between MICA-STR and nasopharyngeal carcinoma in a southern Chinese Han population , 2006, Immunogenetics.

[70]  Allan Hildesheim,et al.  Variation of the Killer Cell Immunoglobulin-Like Receptors and HLA-C Genes in Nasopharyngeal Carcinoma , 2005, Cancer Epidemiology Biomarkers & Prevention.

[71]  W. Klitz,et al.  Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. , 2002, Journal of the National Cancer Institute.

[72]  M. Masucci,et al.  Proteasome inhibitors reconstitute the presentation of cytotoxic T‐cell epitopes in Epstein‐Barr virus–associated tumors , 2002, International journal of cancer.

[73]  M. Masucci,et al.  Multiple HLA A11-restricted cytotoxic T-lymphocyte epitopes of different immunogenicities in the Epstein-Barr virus-encoded nuclear antigen 4 , 1993, Journal of virology.

[74]  Pelayo Vilar,et al.  Nasopharyngeal Carcinoma , 1966 .