Compactly supported bidimensional wavelet bases with hexagonal symmetry
暂无分享,去创建一个
[1] Klaus Höllig,et al. Bivariate cardinal interpolation by splines on a three-direction mesh , 1985 .
[2] Edward H. Adelson,et al. Orthogonal Pyramid Transforms For Image Coding. , 1987, Other Conferences.
[3] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[4] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[5] Stéphane Jaffard. Construction et propriétés des bases d'ondelettes : Remarques sur la contrôlabilité exacte , 1989 .
[6] I. Daubechies,et al. A STABILITY CRITERION FOR BIORTHOGONAL WAVELET BASES AND THEIR RELATED SUBBAND CODING SCHEME , 1992 .
[7] C. Chui,et al. Compactly supported box-spline wavelets , 1992 .
[8] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[9] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[10] I. Daubechies,et al. Othonormal bases of compactly supported wavelets III: better frequency resolution , 1993 .
[11] Albert Cohen,et al. Biorthogonal wavelets , 1993 .
[12] I. Daubechies. Orthonormal bases of compactly supported wavelets II: variations on a theme , 1993 .
[13] Ronald R. Coifman,et al. Signal processing and compression with wavelet packets , 1994 .