Tracking and validation techniques for topographically organized tractography

ABSTRACT Topographic regularity of axonal connections is commonly understood as the preservation of spatial relationships between nearby neurons and is a fundamental structural property of the brain. In particular the retinotopic mapping of the visual pathway can even be quantitatively computed. Inspired from this previously untapped anatomical knowledge, we propose a novel tractography method that preserves both topographic and geometric regularity. We make use of parameterized curves with Frenet‐Serret frame and introduce a highly flexible mechanism for controlling geometric regularity. At the same time, we incorporate a novel local data support term in order to account for topographic organization. Unifying geometry with topographic regularity, we develop a Bayesian framework for generating highly organized streamlines that accurately follow neuroanatomy. We additionally propose two novel validation techniques to quantify topographic regularity. In our experiments, we studied the results of our approach with respect to connectivity, reproducibility and topographic regularity aspects. We present both qualitative and quantitative comparisons of our technique against three algorithms from MRtrix3. We show that our method successfully generates highly organized fiber tracks while capturing bundle anatomy that are geometrically challenging for other approaches.

[1]  Alan Connelly,et al.  Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping , 2010, NeuroImage.

[2]  Jean Daunizeau,et al.  Accurate Anisotropic Fast Marching for Diffusion-Based Geodesic Tractography , 2007, Int. J. Biomed. Imaging.

[3]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[4]  J. Rilling,et al.  Comparison of diffusion tractography and tract‐tracing measures of connectivity strength in rhesus macaque connectome , 2015, Human brain mapping.

[5]  F. Ottes,et al.  Visuomotor fields of the superior colliculus: A quantitative model , 1986, Vision Research.

[6]  Patrick Pérez,et al.  Adaptive Multi-modal Particle Filtering for Probabilistic White Matter Tractography , 2013, IPMI.

[7]  A. Alexander,et al.  White matter tractography using diffusion tensor deflection , 2003, Human brain mapping.

[8]  Rachid Deriche,et al.  Control Theory and Fast Marching Techniques for Brain Connectivity Mapping , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[9]  Yuanjing Feng,et al.  Ant Colony Optimization for Global White Matter Fiber Tracking , 2011, ICSI.

[10]  Jan Sijbers,et al.  Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution , 2011, Human brain mapping.

[11]  C. Wheeler-Kingshott,et al.  A ranking of diffusion MRI compartment models with in vivo human brain data , 2013, Magnetic resonance in medicine.

[12]  M. Pinsk,et al.  The Anatomical and Functional Organization of the Human Visual Pulvinar , 2015, The Journal of Neuroscience.

[13]  Yonggang Shi,et al.  When tractography meets tracer injections: a systematic study of trends and variation sources of diffusion-based connectivity , 2018, Brain Structure and Function.

[14]  Christoph Palm,et al.  A novel approach to the human connectome: Ultra-high resolution mapping of fiber tracts in the brain , 2011, NeuroImage.

[15]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Alan Connelly,et al.  SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography , 2015, NeuroImage.

[17]  Andrew Zalesky,et al.  DT-MRI Fiber Tracking: A Shortest Paths Approach , 2008, IEEE Transactions on Medical Imaging.

[18]  D. Le Bihan,et al.  A framework based on spin glass models for the inference of anatomical connectivity from diffusion‐weighted MR data – a technical review , 2002, NMR in biomedicine.

[19]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[20]  Arie Tamir,et al.  Combinatorial fiber-tracking of the human brain , 2009, NeuroImage.

[21]  Yonggang Lu,et al.  Improved fiber tractography with Bayesian tensor regularization , 2006, NeuroImage.

[22]  Peter Savadjiev,et al.  Validation and regularization in diffusion MRI tractography , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[23]  Colin Studholme,et al.  Probabilistic tractography using Q-ball imaging and particle filtering: Application to adult and in-utero fetal brain studies , 2013, Medical Image Anal..

[24]  J. Mangin,et al.  New diffusion phantoms dedicated to the study and validation of high‐angular‐resolution diffusion imaging (HARDI) models , 2008, Magnetic resonance in medicine.

[25]  P. Hofman,et al.  Tract Specific Reproducibility of Tractography Based Morphology and Diffusion Metrics , 2012, PloS one.

[26]  Bram Stieltjes,et al.  Investigation of resolution effects using a specialized diffusion tensor phantom , 2014, Magnetic resonance in medicine.

[27]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[28]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[29]  Abbas F. Sadikot,et al.  Flow-based fiber tracking with diffusion tensor and q-ball data: Validation and comparison to principal diffusion direction techniques , 2005, NeuroImage.

[30]  Olaf Sporns,et al.  What Is the Human Connectome , 2009 .

[31]  Gareth J. Barker,et al.  Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging , 2002, IEEE Transactions on Medical Imaging.

[32]  J Sijbers,et al.  Mathematical framework for simulating diffusion tensor MR neural fiber bundles , 2005, Magnetic resonance in medicine.

[33]  Brandon Whitcher,et al.  Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging , 2008, Human brain mapping.

[34]  Daniel C. Alexander,et al.  MicroTrack: An Algorithm for Concurrent Projectome and Microstructure Estimation , 2010, MICCAI.

[35]  Andrew L. Alexander,et al.  Bootstrap white matter tractography (BOOT-TRAC) , 2005, NeuroImage.

[36]  Susanne Schnell,et al.  Global fiber reconstruction becomes practical , 2011, NeuroImage.

[37]  Carl-Fredrik Westin,et al.  Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain , 2007, NeuroImage.

[38]  Arthur W. Toga,et al.  Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis , 2016, NeuroImage.

[39]  E. Achten,et al.  The design of anisotropic diffusion phantoms for the validation of diffusion weighted magnetic resonance imaging , 2008, Physics in medicine and biology.

[40]  Dmitry S. Novikov,et al.  MesoFT: Unifying Diffusion Modelling and Fiber Tracking , 2014, MICCAI.

[41]  Jean-Francois Mangin,et al.  A Novel Global Tractography Algorithm Based on an Adaptive Spin Glass Model , 2009, MICCAI.

[42]  David M. Kaplan,et al.  Topographic organization in the brain: searching for general principles , 2014, Trends in Cognitive Sciences.

[43]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[44]  Peter Savadjiev,et al.  A Geometry-Based Particle Filtering Approach to White Matter Tractography , 2010, MICCAI.

[45]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[46]  Robin M Heidemann,et al.  High resolution diffusion‐weighted imaging using readout‐segmented echo‐planar imaging, parallel imaging and a two‐dimensional navigator‐based reacquisition , 2009, Magnetic resonance in medicine.

[47]  Jean-Philippe Thiran,et al.  COMMIT: Convex Optimization Modeling for Microstructure Informed Tractography , 2015, IEEE Transactions on Medical Imaging.

[48]  Maxime Descoteaux,et al.  Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom , 2011, NeuroImage.

[49]  Carl-Fredrik Westin,et al.  A filtered approach to neural tractography using the Watson directional function , 2010, Medical Image Anal..

[50]  Timothy E. J. Behrens,et al.  The topographic connectome , 2013, Current Opinion in Neurobiology.

[51]  Carl-Fredrik Westin,et al.  A Hamilton-Jacobi-Bellman Approach to High Angular Resolution Diffusion Tractography , 2005, MICCAI.

[52]  Philip A. Cook,et al.  Exploiting peak anisotropy for tracking through complex structures , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[53]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[54]  K. Deisseroth,et al.  CLARITY for mapping the nervous system , 2013, Nature Methods.

[55]  Jan Sijbers,et al.  Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data , 2014, NeuroImage.

[56]  Chad J. Donahue,et al.  Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey , 2016, The Journal of Neuroscience.

[57]  L. M. Auer,et al.  Fiber Tracking from DTI Using Linear State Space Models: Detectability of the Pyramidal Tract , 2002, NeuroImage.

[58]  Peter Savadjiev,et al.  Beyond Crossing Fibers: Bootstrap Probabilistic Tractography Using Complex Subvoxel Fiber Geometries , 2014, Front. Neurol..

[59]  Do-Wan Lee,et al.  Topographic organization of motor fibre tracts in the human brain: findings in multiple locations using magnetic resonance diffusion tensor tractography , 2016, European Radiology.

[60]  Anthony J. Sherbondy,et al.  ConTrack: finding the most likely pathways between brain regions using diffusion tractography. , 2008, Journal of vision.

[61]  Yonggang Shi,et al.  Probabilistic Tractography for Topographically Organized Connectomes , 2016, MICCAI.

[62]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[63]  Jean-Philippe Thiran,et al.  DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection , 2003, NeuroImage.

[64]  Peter Savadjiev,et al.  3D curve inference for diffusion MRI regularization and fibre tractography , 2006, Medical Image Anal..

[65]  Carl-Fredrik Westin,et al.  A Bayesian approach for stochastic white matter tractography , 2006, IEEE Transactions on Medical Imaging.

[66]  F. Pestilli,et al.  Evaluation and statistical inference for living connectomes , 2014, Nature Methods.

[67]  Brian A. Wandell,et al.  Ensemble Tractography , 2016, PLoS Comput. Biol..

[68]  D. Pandya,et al.  Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. , 2007, Brain : a journal of neurology.

[69]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[70]  Rachid Deriche,et al.  Towards quantitative connectivity analysis: reducing tractography biases , 2014, NeuroImage.

[71]  Evandro de Oliveira,et al.  Microsurgical Anatomy of the Optic Radiation and Related Fibers in 3-Dimensional Images , 2012, Neurosurgery.

[72]  G. Holmes DISTURBANCES OF VISION BY CEREBRAL LESIONS , 1918, The British journal of ophthalmology.

[73]  Mark F. Lythgoe,et al.  Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison , 2012, NeuroImage.

[74]  Chun-Hung Yeh,et al.  Correction for diffusion MRI fibre tracking biases: The consequences for structural connectomic metrics , 2016, NeuroImage.

[75]  Steen Moeller,et al.  Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project , 2013, NeuroImage.

[76]  Jerry L. Prince,et al.  Probabilistic tractography using Lasso bootstrap , 2017, Medical Image Anal..

[77]  Timothy D. Verstynen,et al.  Deterministic Diffusion Fiber Tracking Improved by Quantitative Anisotropy , 2013, PloS one.

[78]  S C Williams,et al.  Non‐invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI , 1999, Magnetic resonance in medicine.

[79]  Michael I. Miller,et al.  Knowledge-based automated reconstruction of human brain white matter tracts using a path-finding approach with dynamic programming , 2014, NeuroImage.

[80]  A. Connelly,et al.  Improved probabilistic streamlines tractography by 2 nd order integration over fibre orientation distributions , 2009 .

[81]  Derek K. Jones Tractography Gone Wild: Probabilistic Fibre Tracking Using the Wild Bootstrap With Diffusion Tensor MRI , 2008, IEEE Transactions on Medical Imaging.

[82]  G. Johnson,et al.  A Diffusion MRI Tractography Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data , 2015, Cerebral cortex.

[83]  Peter Boesiger,et al.  BootGraph: Probabilistic fiber tractography using bootstrap algorithms and graph theory , 2013, NeuroImage.

[84]  Valerij G. Kiselev,et al.  Fiber Continuity: An Anisotropic Prior for ODF Estimation , 2011, IEEE Transactions on Medical Imaging.

[85]  J M Taveras,et al.  Magnetic Resonance in Medicine , 1991, The Western journal of medicine.

[86]  Peter F. Neher,et al.  The challenge of mapping the human connectome based on diffusion tractography , 2017, Nature Communications.

[87]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[88]  Li Bai,et al.  Brain tractography using Q-ball imaging and graph theory: Improved connectivities through fibre crossings via a model-based approach , 2010, NeuroImage.

[89]  Hui Zhang,et al.  Beyond Crossing Fibers: Tractography Exploiting Sub-voxel Fibre Dispersion and Neighbourhood Structure , 2013, IPMI.

[90]  Alessandro Daducci,et al.  Microstructure Informed Tractography: Pitfalls and Open Challenges , 2016, Front. Neurosci..

[91]  D G Gadian,et al.  Limitations and requirements of diffusion tensor fiber tracking: An assessment using simulations , 2002, Magnetic resonance in medicine.

[92]  R. Goebel,et al.  Ground truth hardware phantoms for validation of diffusion‐weighted MRI applications , 2010, Journal of magnetic resonance imaging : JMRI.

[93]  B. Wandell Clarifying Human White Matter. , 2016, Annual review of neuroscience.

[94]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[95]  Maxime Descoteaux,et al.  Brain Connectivity Using Geodesics in HARDI , 2009, MICCAI.

[96]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[97]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[98]  Daniel Gembris,et al.  White matter fiber tractography via anisotropic diffusion simulation in the human brain , 2005, IEEE Transactions on Medical Imaging.

[99]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[100]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[101]  Timothy E. J. Behrens,et al.  Human and Monkey Ventral Prefrontal Fibers Use the Same Organizational Principles to Reach Their Targets: Tracing versus Tractography , 2013, The Journal of Neuroscience.

[102]  Carl-Fredrik Westin,et al.  Regularized Stochastic White Matter Tractography Using Diffusion Tensor MRI , 2002, MICCAI.

[103]  Bram Stieltjes,et al.  Fiberfox: Facilitating the creation of realistic white matter software phantoms , 2014, Magnetic resonance in medicine.

[104]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[105]  Douglas L. Rosene,et al.  The Geometric Structure of the Brain Fiber Pathways , 2012, Science.

[106]  Yonggang Shi,et al.  Fiber Orientation and Compartment Parameter Estimation From Multi-Shell Diffusion Imaging , 2015, IEEE Transactions on Medical Imaging.

[107]  Alan Connelly,et al.  Diffusion-weighted magnetic resonance imaging fibre tracking using a front evolution algorithm , 2003, NeuroImage.

[108]  D. Leopold,et al.  Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited , 2014, Proceedings of the National Academy of Sciences.

[109]  Rachid Deriche,et al.  Labeling of ambiguous subvoxel fibre bundle configurations in high angular resolution diffusion MRI , 2008, NeuroImage.

[110]  V. Kiselev,et al.  Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation , 2016, NMR in biomedicine.

[111]  Heidi Johansen-Berg,et al.  Tractography: Where Do We Go from Here? , 2011, Brain Connect..

[112]  Arthur W. Toga,et al.  A Diffusion Tensor Imaging Tractography Algorithm Based on Navier–Stokes Fluid Mechanics , 2009, IEEE Transactions on Medical Imaging.

[113]  Maxime Descoteaux,et al.  Dipy, a library for the analysis of diffusion MRI data , 2014, Front. Neuroinform..

[114]  Arthur W. Toga,et al.  Topographic Regularity for Tract Filtering in Brain Connectivity , 2017, IPMI.

[115]  Yujie Li,et al.  Optimization of large-scale mouse brain connectome via joint evaluation of DTI and neuron tracing data , 2015, NeuroImage.

[116]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[117]  Jerry L. Prince,et al.  Estimation of fiber orientations using neighborhood information , 2016, Medical Image Anal..

[118]  V. Kiselev,et al.  Gibbs tracking: A novel approach for the reconstruction of neuronal pathways , 2008, Magnetic resonance in medicine.

[119]  Timothy Edward John Behrens,et al.  A Bayesian framework for global tractography , 2007, NeuroImage.

[120]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[121]  Carl-Fredrik Westin,et al.  New Approaches to Estimation of White Matter Connectivity in Diffusion Tensor MRI: Elliptic PDEs and Geodesics in a Tensor-Warped Space , 2002, MICCAI.

[122]  Jan Sijbers,et al.  ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data , 2009 .

[123]  G. Marcus,et al.  The topographic brain: from neural connectivity to cognition , 2007, Trends in Neurosciences.

[124]  Martha Elizabeth Shenton,et al.  Neural Tractography Using an Unscented Kalman Filter , 2009, IPMI.

[125]  Leonardo L. Gollo,et al.  Connectome sensitivity or specificity: which is more important? , 2016, NeuroImage.

[126]  David H. Brainard,et al.  Correction of Distortion in Flattened Representations of the Cortical Surface Allows Prediction of V1-V3 Functional Organization from Anatomy , 2014, PLoS Comput. Biol..

[127]  Lester Melie-García,et al.  Characterizing brain anatomical connections using diffusion weighted MRI and graph theory , 2007, NeuroImage.

[128]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[129]  Alan Connelly,et al.  SIFT: Spherical-deconvolution informed filtering of tractograms , 2013, NeuroImage.

[130]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[131]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[132]  Lawrence H. Staib,et al.  White matter tractography by anisotropic wavefront evolution and diffusion tensor imaging , 2005, Medical Image Anal..

[133]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[134]  Guido Gerig,et al.  Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling , 2009, Medical Image Anal..

[135]  Essa Yacoub,et al.  A Hough transform global probabilistic approach to multiple-subject diffusion MRI tractography , 2011, Medical Image Anal..

[136]  Omar H. Butt,et al.  The Retinotopic Organization of Striate Cortex Is Well Predicted by Surface Topology , 2012, Current Biology.

[137]  A Villringer,et al.  Somatotopic organization of human secondary somatosensory cortex. , 2001, Cerebral cortex.

[138]  Emmanuel Prados eprados,et al.  Control Theory and Fast Marching Methods for Brain Connectivity Mapping , 2022 .

[139]  Jean-Philippe Thiran,et al.  Global Tractography with Embedded Anatomical Priors for Quantitative Connectivity Analysis , 2014, Front. Neurol..

[140]  Rachid Deriche,et al.  Brain Connectivity Mapping Using Riemannian Geometry, Control Theory, and PDEs , 2009, SIAM J. Imaging Sci..

[141]  Maxime Descoteaux,et al.  Tractometer: Towards validation of tractography pipelines , 2013, Medical Image Anal..