LMI Representations of Convex Semialgebraic Sets and Determinantal Representations of Algebraic Hypersurfaces: Past, Present, and Future

10 years ago or so Bill Helton introduced me to some mathematical problems arising from semidefinite programming. This paper is a partial account of what was and what is happening with one of these problems, including many open questions and some new results.

[1]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[2]  M. Naimark,et al.  The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations , 1981 .

[3]  J. Herzog,et al.  Matrix factorizations of homogeneous polynomials , 1988 .

[4]  Bernd Sturmfels,et al.  Quartic curves and their bitangents , 2010, J. Symb. Comput..

[5]  Waa Nuij A Note on Hyperbolic Polynomials. , 1968 .

[6]  Petter Brändén Obstructions to determinantal representability , 2011 .

[7]  J. William Helton,et al.  Convex Matrix Inequalities Versus Linear Matrix Inequalities , 2009, IEEE Transactions on Automatic Control.

[8]  V. Vinnikov,et al.  On the determinantal representations of singular hypersurfaces in P^n , 2009, 0906.3012.

[9]  Didier Henrion,et al.  Detecting rigid convexity of bivariate polynomials , 2008, 0801.3592.

[10]  Suk-Geun Hwang,et al.  Cauchy's Interlace Theorem for Eigenvalues of Hermitian Matrices , 2004, Am. Math. Mon..

[11]  L. Gårding An Inequality for Hyperbolic Polynomials , 1959 .

[12]  Jean B. Lasserre,et al.  Convex sets with semidefinite representation , 2009, Math. Program..

[13]  Heinz H. Bauschke,et al.  Hyperbolic Polynomials and Convex Analysis , 2001, Canadian Journal of Mathematics.

[14]  P. Griffiths,et al.  Geometry of algebraic curves , 1985 .

[15]  L. Gårding Linear hyperbolic partial differential equations with constant coefficients , 1951 .

[16]  Ilia Itenberg,et al.  ON REAL DETERMINANTAL QUARTICS , 2010, 1007.3028.

[17]  Joseph A. Victor Ball,et al.  Zero-pole interpolation for matrix meromorphic functions on a compact Riemann surface and a matrix Fay trisecant identity , 1997 .

[18]  Osman Güler,et al.  Hyperbolic Polynomials and Interior Point Methods for Convex Programming , 1997, Math. Oper. Res..

[19]  J. William Helton,et al.  Every convex free basic semi-algebraic set has an LMI representation , 2012 .

[20]  S. Lefschetz L'analysis situs et la géométrie algébrique , 1925, Mathematical Gazette.

[21]  Arnaud Beauville,et al.  Determinantal hypersurfaces , 1999 .

[22]  B. Dubrovin,et al.  Matrix finite-zone operators , 1985 .

[23]  Erich Kaltofen,et al.  Symmetric Determinantal Representation of Formulas and Weakly Skew Circuits , 2010, ArXiv.

[24]  B. Ulrich,et al.  Linear maximal Cohen-Macaulay modules over strict complete intersections☆ , 1991 .

[25]  V. Vinnikov Self-adjoint determinantal representations of real plane curves , 1993 .

[26]  V. Vinnikov,et al.  Decomposability of local determinantal representations of hypersurfaces , 2010, 1009.2517.

[27]  I. Dolgachev,et al.  Classical Algebraic Geometry: A Modern View , 2012 .

[28]  Joe Harris,et al.  Geometry of Algebraic Curves: Volume I , 1984 .

[29]  J. Helton,et al.  NONCOMMUTATIVE CONVEXITY ARISES FROM LINEAR MATRIX INEQUALITIES. , 2006 .

[30]  Daniel Plaumann,et al.  Determinantal Representations and the Hermite Matrix , 2011, ArXiv.

[31]  Markus Schweighofer,et al.  Exposed Faces of Semidefinitely Representable Sets , 2010, SIAM J. Optim..

[32]  Joseph A. Ball,et al.  Zero-pole interpolation for meromophic matrix functions on an algebraic curve and transfer functions of 2D systems , 1996 .

[33]  J. William Helton,et al.  Semidefinite representation of convex sets , 2007, Math. Program..

[34]  A. Lewis,et al.  The lax conjecture is true , 2003, math/0304104.

[35]  Robin Hartshorne,et al.  Ample subvarieties of algebraic varieties , 1970 .

[36]  Leonard Eugene Dickson Determination of all general homogeneous polynomials expressible as determinants with linear elements , 1921 .

[37]  J. William Helton,et al.  Sufficient and Necessary Conditions for Semidefinite Representability of Convex Hulls and Sets , 2007, SIAM J. Optim..

[38]  Tim Netzer,et al.  Polynomials with and without determinantal representations , 2010, 1008.1931.

[39]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[40]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[41]  A. Nemirovski Advances in convex optimization : conic programming , 2005 .

[42]  David Eisenbud,et al.  Homological algebra on a complete intersection, with an application to group representations , 1980 .

[43]  Pablo A. Parrilo,et al.  Minimizing Polynomial Functions , 2001, Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science.

[44]  A. D. Thomas,et al.  LINE BUNDLES AND HOMOGENEOUS MATRICES , 1979 .

[45]  A. J. Goldman,et al.  Some geometric results in semidefinite programming , 1995, J. Glob. Optim..

[46]  Bernd Sturmfels,et al.  Computing Linear Matrix Representations of Helton-Vinnikov Curves , 2010, ArXiv.

[47]  Victor Vinnikov,et al.  Complete description of determinantal representations of smooth irreducible curves , 1989 .

[48]  James Renegar,et al.  Hyperbolic Programs, and Their Derivative Relaxations , 2006, Found. Comput. Math..

[49]  Joe W. Harris,et al.  On the Noether-Lefschetz theorem and some remarks on codimension-two cycles , 1985 .

[50]  J. Helton,et al.  Linear matrix inequality representation of sets , 2003, math/0306180.

[51]  Tomaž Košir,et al.  Determinantal representations of smooth cubic surfaces , 2006 .

[52]  John D. Fay Theta Functions on Riemann Surfaces , 1973 .