Biology of Applied Digital Ecosystems

A primary motivation for research in digital ecosystems is the desire to exploit the self-organising properties of natural ecosystems. Ecosystems are thought to be robust, scalable architectures that can automatically solve complex, dynamic problems. However, the biological processes that contribute to these properties have not been made explicit in digital ecosystem research. Here, we discuss how biological properties contribute to the self-organising features of natural ecosystems. These properties include populations of evolving agents, a complex dynamic environment, and spatial distributions which generate local interactions. The potential for exploiting these properties in artificial systems is then considered. An example architecture, the digital business ecosystem (DBE), is considered in detail. Simulation results imply that the DBE performs better at large scales than a comparable service-oriented architecture. These results suggest that incorporating ideas from theoretical ecology can contribute to useful self-organising properties in digital ecosystems.

[1]  Thomas S. Ray,et al.  An Evolutionary Approach to Synthetic Biology: Zen and the Art of Creating Life , 1993, Artificial Life.

[2]  Ronald W. Morrison,et al.  Designing Evolutionary Algorithms for Dynamic Environments , 2004, Natural Computing Series.

[3]  C. Tschudin Fraglets – a Metabolistic Execution Model for Communication Protocols , 2003 .

[4]  Otso Ovaskainen,et al.  Metapopulation theory for fragmented landscapes. , 2003, Theoretical population biology.

[5]  Dave Cliff,et al.  Creatures: Entertainment Software Agents with Artificial Life , 2004, Autonomous Agents and Multi-Agent Systems.

[6]  Erik D. Goodman,et al.  Coarse-grain parallel genetic algorithms: categorization and new approach , 1994, Proceedings of 1994 6th IEEE Symposium on Parallel and Distributed Processing.

[7]  Miroslaw Malek,et al.  Current solutions for Web service composition , 2004, IEEE Internet Computing.

[8]  X. Yang,et al.  Chaos in small-world networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  N. Packard,et al.  Connectivity and Catastrophe — Towards a General Theory of Evolution , 2000 .

[10]  David G. Green,et al.  Dual phase evolution — a mechanism for self-organization in complex systems , 2006 .

[11]  S. Pickett,et al.  Ecology: Individuals, populations and communities , 1987 .

[12]  C. S. Holling,et al.  Regime Shifts, Resilience, and Biodiversity in Ecosystem Management , 2004 .

[13]  Gerard Briscoe,et al.  Digital Ecosystems: Evolving Service-Orientated Architectures , 2006, 2006 1st Bio-Inspired Models of Network, Information and Computing Systems.

[14]  J. Connell,et al.  Mechanisms of Succession in Natural Communities and Their Role in Community Stability and Organization , 1977, The American Naturalist.

[15]  Mike P. Papazoglou,et al.  Agent-oriented technology in support of e-business , 2001, CACM.

[16]  Marco Iansiti,et al.  The Keystone Advantage: What the New Dynamics of Business Ecosystems Mean for Strategy, Innovation, and Sustainability , 2004 .

[17]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[18]  R. Levins Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control , 1969 .

[19]  Charles Ofria,et al.  Avida , 2004, Artificial Life.

[20]  A. P. Allen,et al.  Effects of range size on species–area relationships , 2003 .

[21]  Janine M. Benyus,et al.  Biomimicry: Innovation Inspired by Nature , 1997 .

[22]  Lothar Thiele,et al.  A Comparison of Selection Schemes Used in Evolutionary Algorithms , 1996, Evolutionary Computation.

[23]  Dirk Krafzig,et al.  Enterprise SOA: Service-Oriented Architecture Best Practices , 2004 .

[24]  Andrew N. Pargellis,et al.  Digital Life Behavior in the Amoeba World , 2000, Artificial Life.

[25]  Lance D. Chambers The Practical Handbook of Genetic Algorithms: Applications, Second Edition , 2000 .

[26]  M. Newman,et al.  A model of mass extinction. , 1997, Journal of theoretical biology.

[27]  Graham Bell,et al.  The Distribution of Abundance in Neutral Communities , 2000, The American Naturalist.

[28]  Zbigniew Michalewicz,et al.  Designing Evolutionary Algorithms , 2000 .

[29]  Amit P. Sheth,et al.  Enhancing Web Services Description and Discovery to Facilitate Composition , 2004, SWSWPC.

[30]  Kalle Lyytinen,et al.  The Next Wave of Nomadic Computing: A Research Agenda for Information Systems Research , 2008 .

[31]  C. Titus Brown,et al.  Evolutionary Learning in the 2D Artificial Life System "Avida" , 1994, adap-org/9405003.

[32]  David Storch,et al.  Power‐law species–area relationships and self‐similar species distributions within finite areas , 2004 .

[33]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[34]  M. Begon,et al.  Ecology: Individuals, Populations and Communities , 1986 .

[35]  M. Newman,et al.  Scaling and percolation in the small-world network model. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  Roy F. Ellen,et al.  Environment, Subsistence and System: The Ecology of Small-Scale Social Formations , 1982 .

[37]  Ricard V Solé,et al.  Self-organized instability in complex ecosystems. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[38]  Xiaomeng Su,et al.  A Survey of Automated Web Service Composition Methods , 2004, SWSWPC.

[39]  Peter J. Denning,et al.  Beyond calculation - the next fifty years of computing , 1997 .

[40]  C. Langton An Evolutionary Approach to Synthetic Biology: Zen and the Art of Creating Life , 1997 .

[41]  Dave Cliff,et al.  The Creatures Global Digital Ecosystem , 1998, Artificial Life.

[42]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[43]  Sheila A. McIlraith,et al.  Simulation, verification and automated composition of web services , 2002, WWW.

[44]  Douglas R. White,et al.  The Navigability of strong ties: small worlds, tie strength, and network topology , 2002 .

[45]  D. Green,et al.  Interactions matter—complexity in landscapes and ecosystems , 2005 .

[46]  Enrique Alba,et al.  A survey of parallel distributed genetic algorithms , 1999 .

[47]  Nicholas J. Gotelli,et al.  A Primer of Ecology , 1995 .

[48]  Joachim Stender,et al.  Parallel Genetic Algorithms: Theory and Applications , 1993 .

[49]  F. Nachira Towards a Network of Digital Business Ecosystems Fostering the Local Development , 2002 .

[50]  Michael Wooldridge,et al.  Introduction to multiagent systems , 2001 .

[51]  G Briscoe,et al.  Creating a Digital Ecosystem: Service-Oriented Architectures with Distributed Evolutionary Computing , 2007, 0712.4159.

[52]  Terence Soule,et al.  Effects of Code Growth and Parsimony Pressure on Populations in Genetic Programming , 1998, Evolutionary Computation.

[53]  S. Altmann Henderson's Dictionary of Biological Terms, Ninth edition, Sandra Holmes. Van Nostrand Reinhold Company, New York (1979), xi, + 510. Price $29.95 , 1981 .

[54]  Bernard Manderick,et al.  Fine-Grained Parallel Genetic Algorithms , 1989, ICGA.

[55]  Simon A. Levin,et al.  Fragile Dominion: Complexity and the Commons , 1999 .

[56]  Erick Cantú-Paz,et al.  A Survey of Parallel Genetic Algorithms , 2000 .

[57]  S. Levin Ecosystems and the Biosphere as Complex Adaptive Systems , 1998, Ecosystems.

[58]  D. Green,et al.  Connectivity and Catastrophe-Towards a General Theory of Evolution , 2019 .

[59]  Thomas S. Ray,et al.  An Approach to the Synthesis of Life , 1991 .

[60]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[61]  Riccardo Poli,et al.  Parallel genetic algorithm taxonomy , 1999, 1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410).

[62]  Angelo Corallo,et al.  Pervasive Service Architecture for a Digital Business Ecosystem , 2004, ArXiv.

[63]  Sanjiva Weerawarana,et al.  Unraveling the Web services web: an introduction to SOAP, WSDL, and UDDI , 2002, IEEE Internet Computing.

[64]  L. Yaeger Computational Genetics, Physiology, Metabolism, Neural Systems, Learning, Vision, and Behavior or PolyWorld: Life in a New Context , 1997 .

[65]  Munindar P. Singh,et al.  Service-Oriented Computing: Semantics, Processes, Agents , 2010 .

[66]  Yang Yu Research on Blog , 2008 .

[67]  R. Macarthur,et al.  The Theory of Island Biogeography , 1969 .

[68]  Sandra Kay Miller,et al.  Aspect-Oriented Programming Takes Aim at Software Complexity , 2001, Computer.

[69]  Barbara Messing,et al.  An Introduction to MultiAgent Systems , 2002, Künstliche Intell..

[70]  Schloss Birlinghoven Evolution in Time and Space -the Parallel Genetic Algorithm , 1991 .

[71]  F. Nachira,et al.  A Network of Digital Business Ecosystems for Europe : Roots , Processes and Perspectives , 2007 .

[72]  J. Gamarra,et al.  Metapopulation Ecology , 2007 .

[73]  Bernard De Baets,et al.  Is Fitness Inheritance Useful for Real-World Applications? , 2003, EMO.

[74]  Thomas S. Ray An evolutionary approach to synthetic biology: Zen and the art of creating life , 1993 .

[75]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .