Spontaneously broken gauge theories and the coset construction

The methods of non-linear realizations have proven to be powerful in studying the low energy physics resulting from spontaneously broken internal and spacetime symmetries. In this paper, we reconsider how these techniques may be applied to the case of spontaneously broken gauge theories, concentrating on Yang-Mills theories. We find that coset methods faithfully reproduce the description of low energy physics in terms of massive gauge bosons and discover that the St\"uckelberg replacement commonly employed when treating massive gauge theories arises in a natural manner. Uses of the methods are considered in various contexts, including generalizations to $p$-form gauge fields. We briefly discuss potential applications of the techniques to theories of massive gravity and their possible interpretation as a Higgs phase of general relativity.

[1]  M. Serone,et al.  Inequivalence of coset constructions for spacetime symmetries , 2014, 1403.3095.

[2]  S. Moroz,et al.  Topological interactions of Nambu-Goldstone bosons in quantum many-body systems , 2014, 1405.2670.

[3]  H. Murayama,et al.  Spontaneously broken non-Abelian gauge symmetries in nonrelativistic systems , 2014 .

[4]  H. Murayama,et al.  Englert-Brout-Higgs Mechanism in Nonrelativistic Systems , 2014, 1405.0997.

[5]  Kurt Hinterbichler,et al.  Goldstones with Extended Shift Symmetries , 2014, 1404.4047.

[6]  S. Gongyo,et al.  Nambu-Goldstone bosons and the Higgs mechanism without Lorentz invariance: Analysis based on constrained-system theory , 2014, 1404.1892.

[7]  K. Kampf,et al.  Unification of Galileon dualities , 2014, 1403.6813.

[8]  A. Tolley,et al.  Generalized Galileon duality , 2014, 1403.3690.

[9]  H. Murayama,et al.  Effective Lagrangian for Nonrelativistic Systems , 2014, 1402.7066.

[10]  Haruki Watanabe,et al.  Spontaneous breaking of spacetime symmetries and the inverse Higgs effect , 2014, 1401.5596.

[11]  A. Nicolis,et al.  Ultraviolet completion without symmetry restoration , 2013, 1311.6491.

[12]  A. Nicolis,et al.  Relativistic fluids, superfluids, solids, and supersolids from a coset construction , 2013, 1307.0517.

[13]  M. Fasiello,et al.  Galileon Duality , 2013, 1308.2702.

[14]  M. Serone,et al.  Non-linear representations of the conformal group and mapping of galileons , 2013, 1306.2946.

[15]  A. Nicolis,et al.  More on gapped Goldstones at finite density: more gapped Goldstones , 2013, 1306.1240.

[16]  H. Murayama,et al.  Redundancies in Nambu-Goldstone bosons. , 2013, Physical review letters.

[17]  Y. Hidaka Counting rule for Nambu-Goldstone modes in nonrelativistic systems. , 2012, Physical review letters.

[18]  M. Trodden,et al.  Galileons as Wess-Zumino terms , 2012, 1203.3191.

[19]  H. Murayama,et al.  Unified description of Nambu-Goldstone bosons without Lorentz invariance. , 2012, Physical review letters.

[20]  J. Khoury,et al.  Non-linear realizations of conformal symmetry and effective field theory for the pseudo-conformal universe , 2012, 1202.6056.

[21]  Kurt Hinterbichler Theoretical Aspects of Massive Gravity , 2011, 1105.3735.

[22]  Haruki Watanabe,et al.  Number of Nambu-Goldstone bosons and its relation to charge densities , 2011, 1109.6327.

[23]  Claudia de Rham,et al.  Resummation of massive gravity. , 2010, Physical review letters.

[24]  I. N. McArthur Nonlinear realizations of symmetries and unphysical Goldstone bosons , 2010, 1009.3696.

[25]  P. West,et al.  Local E(11) , 2009, 0902.4678.

[26]  H. Georgi,et al.  Effective field theory for massive gravitons and gravity in theory space , 2002, hep-th/0210184.

[27]  A. Manohar,et al.  Spontaneously broken spacetime symmetries and Goldstone's theorem. , 2001, Physical review letters.

[28]  J. M. Izquierdo,et al.  An introduction to some novel applications of Lie algebra cohomology in mathematics and physics , 2001 .

[29]  G. Dunne Aspects Of Chern-Simons Theory , 1999, hep-th/9902115.

[30]  F. Wilczek,et al.  Color flavor locking and chiral symmetry breaking in high density QCD , 1998, hep-ph/9804403.

[31]  J. M. Izquierdo,et al.  An introduction to some novel applications of Lie algebra cohomology and physics , 1998, physics/9803046.

[32]  J. A. Azcárraga,et al.  Effective actions, relative cohomology and Chern-Simons forms , 1997, hep-th/9711064.

[33]  B R Greene,et al.  String theory. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Polchinski An introduction to the bosonic string , 1998 .

[35]  E. D'hoker,et al.  Invariant effective actions, cohomology of homogeneous spaces and anomalies , 1995, hep-th/9502162.

[36]  Weinberg,et al.  General effective actions. , 1994, Physical review. D, Particles and fields.

[37]  London,et al.  Uses and abuses of effective Lagrangians. , 1992, Physical review. D, Particles and fields.

[38]  J. Preskill Gauge Anomalies in an Effective Field Theory , 1991 .

[39]  E. Witten Global Aspects of Current Algebra , 1983 .

[40]  E. Ivanov,et al.  Gauge theories as theories of spontaneous breakdown , 1976 .

[41]  J. Rembielinski,et al.  On gauge groups , 1976 .

[42]  H. Nielsen,et al.  On how to count Goldstone bosons , 1976 .

[43]  A. B. Borisov,et al.  Theory of Dynamical Affine and Conformal Symmetries as Gravity Theory , 1974 .

[44]  V. I. Ogievetakii Infinite-dimensional algebra of general covariance group as the closure of finite-dimensional algebras of conformal and linear groups , 1973 .

[45]  B. Zumino Effective Lagrangians and Broken Symmetries , 1970 .

[46]  Julius Wess,et al.  STRUCTURE OF PHENOMENOLOGICAL LAGRANGIANS. II. , 1969 .

[47]  S. Weinberg NONLINEAR REALIZATIONS OF CHIRAL SYMMETRY. , 1968 .