New Construction for Constant Dimension Subspace Codes via a Composite Structure

One of the most fundamental topics in subspace coding is to explore the maximal possible value <inline-formula> <tex-math notation="LaTeX">${\mathbf{A}}_{q}(n,d,k)$ </tex-math></inline-formula> of a set of <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-dimensional subspaces in <inline-formula> <tex-math notation="LaTeX">$\mathbb F_{q}^{n}$ </tex-math></inline-formula> such that the subspace distance satisfies <inline-formula> <tex-math notation="LaTeX">$\text {d}_{\text {S}}(U,V) = \dim (U+V)-\dim (U\cap V)\,\,\geq d$ </tex-math></inline-formula> for any two different <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-dimensional subspaces <inline-formula> <tex-math notation="LaTeX">$U$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$V$ </tex-math></inline-formula> in this set. In this letter, we propose a construction for constant dimension subspace codes by inserting a composite structure composing of an MRD code and its sub-codes. Its vast advantage over the previous constructions has been confirmed through extensive examples. At least 49 new constant dimension subspace codes which exceeds the currently best codes are constructed.

[1]  Alberto Ravagnani,et al.  Subspace codes from Ferrers diagrams , 2014, ArXiv.

[2]  Alfred Wassermann,et al.  Tables of subspace codes , 2016, ArXiv.

[3]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[4]  Sascha Kurz,et al.  A note on the linkage construction for constant dimension codes , 2019, ArXiv.

[5]  Natalia Silberstein,et al.  Codes and designs related to lifted MRD codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[6]  Sascha Kurz,et al.  Lifted codes and the multilevel construction for constant dimension codes , 2020, ArXiv.

[7]  Antonio Cossidente,et al.  Combining subspace codes , 2019, ArXiv.

[8]  Sascha Kurz,et al.  Asymptotic Bounds for the Sizes of Constant Dimension Codes and an Improved Lower Bound , 2017, ICMCTA.

[9]  Antonio Cossidente,et al.  Subspace Codes in PG(2N − 1, Q) , 2014, Combinatorica.

[10]  Natalia Silberstein,et al.  Subspace Codes Based on Graph Matchings, Ferrers Diagrams, and Pending Blocks , 2014, IEEE Transactions on Information Theory.

[11]  Heide Gluesing-Luerssen,et al.  Construction of subspace codes through linkage , 2015, Adv. Math. Commun..

[12]  Fagang Li Construction of Constant Dimension Subspace Codes by Modifying Linkage Construction , 2020, IEEE Transactions on Information Theory.

[13]  Sascha Kurz,et al.  Optimal Binary Subspace Codes of Length 6 , Constant Dimension 3 and Minimum Subspace Distance 4 , 2014 .

[14]  Alfred Wassermann,et al.  Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6 , 2019, Des. Codes Cryptogr..

[15]  Hao Chen,et al.  New Constant-Dimension Subspace Codes from Maximum Rank Distance Codes , 2018, IEEE Transactions on Information Theory.

[16]  Hao Chen,et al.  New Constructions of Subspace Codes Using Subsets of MRD Codes in Several Blocks , 2019, IEEE Transactions on Information Theory.

[17]  Daniel Heinlein Generalized Linkage Construction for Constant-Dimension Codes , 2021, IEEE Transactions on Information Theory.

[18]  Xianmang He Construction of Constant Dimension Codes From Two Parallel Versions of Linkage Construction , 2020, IEEE Communications Letters.

[19]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[20]  Alberto Ravagnani,et al.  Rank distribution of Delsarte codes , 2015, ArXiv.

[21]  Natalia Silberstein,et al.  Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams , 2008, IEEE Transactions on Information Theory.

[22]  Jian Weng,et al.  Parameter-controlled inserting constructions of constant dimension subspace codes , 2020, ArXiv.