The successive projections algorithm for variable selection in spectroscopic multicomponent analysis

[1]  M. Forina,et al.  Iterative predictor weighting (IPW) PLS: a technique for the elimination of useless predictors in regression problems , 1999 .

[2]  Roberto Todeschini,et al.  Kohonen artificial neural networks as a tool for wavelength selection in multicomponent spectrofluorimetric PLS modelling: application to phenol, o-cresol, m-cresol and p-cresol mixtures , 1999 .

[3]  John H. Kalivas,et al.  Cyclic subspace regression with analysis of wavelength-selection criteria , 1999 .

[4]  D B Kell,et al.  Variable selection in discriminant partial least-squares analysis. , 1998, Analytical chemistry.

[5]  D. Kell,et al.  Variable selection in wavelet regression models , 1998 .

[6]  Desire L. Massart,et al.  Variable selection for neural networks in multivariate calibration , 1998 .

[7]  D. Massart,et al.  Application of wavelet transform to extract the relevant component from spectral data for multivariate calibration. , 1997, Analytical chemistry.

[8]  D. Massart,et al.  Elimination of uninformative variables for multivariate calibration. , 1996, Analytical chemistry.

[9]  Svante Wold,et al.  Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection , 1996 .

[10]  Israel Schechter,et al.  Wavelength Selection for Simultaneous Spectroscopic Analysis. Experimental and Theoretical Study , 1996 .

[11]  Riccardo Leardi,et al.  Genetic Algorithms as a Tool for Wavelength Selection in Multivariate Calibration , 1995 .

[12]  C. B. Lucasius,et al.  Understanding and using genetic algorithms Part 2. Representation, configuration and hybridization , 1994 .

[13]  C. B. Lucasius,et al.  Genetic algorithms in wavelength selection: a comparative study , 1994 .

[14]  R. Boggia,et al.  Genetic algorithms as a strategy for feature selection , 1992 .

[15]  John H. Kalivas,et al.  Global optimization by simulated annealing with wavelength selection for ultraviolet-visible spectrophotometry , 1989 .

[16]  G. Stewart Collinearity and Least Squares Regression , 1987 .

[17]  Satoshi Kawata,et al.  Optimal Wavelength Selection for Quantitative Analysis , 1986 .

[18]  David A. Belsley,et al.  Regression Diagnostics: Identifying Influential Data and Sources of Collinearity , 1980 .

[19]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[20]  Alejandro C. Olivieri,et al.  Wavelength selection by net analyte signals calculated with multivariate factor-based hybrid linear analysis (HLA). A theoretical and experimental comparison with partial least-squares (PLS) , 1999 .

[21]  C. Spiegelman,et al.  Theoretical Justification of Wavelength Selection in PLS Calibration:  Development of a New Algorithm. , 1998, Analytical Chemistry.

[22]  R. Leardi Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection , 1994 .

[23]  Wolfhard Wegscheider,et al.  Spectrophotometric multicomponent analysis applied to trace metal determinations , 1985 .

[24]  B. Kowalski,et al.  Error propagation and optimal performance in multicomponent analysis , 1981 .

[25]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[26]  Sidney Addelman,et al.  trans-Dimethanolbis(1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionato)zinc(II) , 2008, Acta crystallographica. Section E, Structure reports online.

[27]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[28]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .