Proteolysis of AKAP121 regulates mitochondrial activity during cellular hypoxia and brain ischaemia

[1]  Naoto Hoshi,et al.  Dynamic regulation of cAMP synthesis through anchored PKA-adenylyl cyclase V/VI complexes. , 2006, Molecular cell.

[2]  Oxana V. Baranova,et al.  The Transcriptional Activator Hypoxia Inducible Factor 2 (HIF-2/EPAS-1) Regulates the Oxygen-Dependent Expression of Erythropoietin in Cortical Astrocytes , 2006, The Journal of Neuroscience.

[3]  T. Lorca,et al.  Meiotic regulation of the CDK activator RINGO/Speedy by ubiquitin-proteasome-mediated processing and degradation , 2006, Nature Cell Biology.

[4]  K. E. Smith,et al.  Regulation of neuronal PKA signaling through AKAP targeting dynamics. , 2006, European journal of cell biology.

[5]  M. Fehlings,et al.  Ischemic Insults Direct Glutamate Receptor Subunit 2-Lacking AMPA Receptors to Synaptic Sites , 2006, The Journal of Neuroscience.

[6]  Kimberly C. Smith,et al.  Dynamic Anchoring of PKA Is Essential during Oocyte Maturation , 2006, Current Biology.

[7]  Susan S. Taylor,et al.  Dynamics of signaling by PKA. , 2005, Biochimica et biophysica acta.

[8]  G. Pignataro,et al.  Divergent modulation of iron regulatory proteins and ferritin biosynthesis by hypoxia/reoxygenation in neurones and glial cells , 2005, Journal of neurochemistry.

[9]  Alessandra Livigni,et al.  Mitochondrial AKAP121 links cAMP and src signaling to oxidative metabolism. , 2005, Molecular biology of the cell.

[10]  E. Avvedimento,et al.  cAMP-PKA signaling to the mitochondria: protein scaffolds, mRNA and phosphatases. , 2005, Cellular signalling.

[11]  John D. Scott,et al.  AKAP signalling complexes: focal points in space and time , 2004, Nature Reviews Molecular Cell Biology.

[12]  A. Tortiglione,et al.  Two Sodium/Calcium Exchanger Gene Products, NCX1 and NCX3, Play a Major Role in the Development of Permanent Focal Cerebral Ischemia , 2004, Stroke.

[13]  K. Davies,et al.  Mediation of Af4 protein function in the cerebellum by Siah proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Bowtell,et al.  Siah2 Regulates Stability of Prolyl-Hydroxylases, Controls HIF1α Abundance, and Modulates Physiological Responses to Hypoxia , 2004, Cell.

[15]  A. Secondo,et al.  Neuronal NOS activation during oxygen and glucose deprivation triggers cerebellar granule cell death in the later reoxygenation phase , 2004, Journal of neuroscience research.

[16]  A. Ullrich,et al.  Mitochondrial AKAP121 Binds and Targets Protein Tyrosine Phosphatase D1, a Novel Positive Regulator of src Signaling , 2004, Molecular and Cellular Biology.

[17]  D. Bowtell,et al.  Generation and Analysis of Siah2 Mutant Mice , 2003, Molecular and Cellular Biology.

[18]  J. Pouysségur,et al.  HIF prolyl‐hydroxylase 2 is the key oxygen sensor setting low steady‐state levels of HIF‐1α in normoxia , 2003, The EMBO journal.

[19]  E. Avvedimento,et al.  PKA-dependent binding of mRNA to the mitochondrial AKAP121 protein. , 2003, Journal of molecular biology.

[20]  L. Cardone,et al.  Essential Role of A-kinase Anchor Protein 121 for cAMP Signaling to Mitochondria* , 2003, The Journal of Biological Chemistry.

[21]  L. Staudt,et al.  Regulation of BOB.1/OBF.1 stability by SIAH , 2001, The EMBO journal.

[22]  E. Avvedimento,et al.  The biological functions of A-kinase anchor proteins. , 2001, Journal of molecular biology.

[23]  Susan S. Taylor,et al.  Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. , 1999, Molecular cell.

[24]  E. Avvedimento,et al.  Expression of A Kinase Anchor Protein 121 Is Regulated by Hormones in Thyroid and Testicular Germ Cells* , 1998, The Journal of Biological Chemistry.

[25]  J. Scott,et al.  Regulation of expression of A-kinase anchoring proteins in rat granulosa cells. , 1998, Biology of reproduction.

[26]  Y. Li,et al.  A-kinase anchor protein 75 increases the rate and magnitude of cAMP signaling to the nucleus , 1997, Current Biology.

[27]  M. Vidal,et al.  Mammalian homologs of seven in absentia regulate DCC via the ubiquitin-proteasome pathway. , 1997, Genes & development.

[28]  T. P. Neufeld,et al.  PHYL Acts to Down-Regulate TTK88, a Transcriptional Repressor of Neuronal Cell Fates, by a SINA-Dependent Mechanism , 1997, Cell.

[29]  Y. Li,et al.  Photoreceptor Cell Differentiation Requires Regulated Proteolysis of the Transcriptional Repressor Tramtrack , 1997, Cell.

[30]  C. Rubin,et al.  Organelle-specific Targeting of Protein Kinase AII (PKAII) , 1997, The Journal of Biological Chemistry.

[31]  Susan S. Taylor,et al.  Identification of a Novel Protein Kinase A Anchoring Protein That Binds Both Type I and Type II Regulatory Subunits* , 1997, The Journal of Biological Chemistry.

[32]  M. Goldberg,et al.  Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  R. J. Mullen,et al.  NeuN, a neuronal specific nuclear protein in vertebrates. , 1992, Development.

[34]  B. de Kruijff,et al.  Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. , 1990, Biochimica et biophysica acta.

[35]  M. Hansen,et al.  Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. , 1989, Journal of immunological methods.

[36]  J. Dixon,et al.  Mitochondrial modulation: reversible phosphorylation takes center stage? , 2006, Trends in biochemical sciences.

[37]  E. Avvedimento,et al.  Mitochondrial AKAP 121 links cAMP and src signalling to oxidative metabolism , 2005 .

[38]  E. Aandahl,et al.  Localized effects of cAMP mediated by distinct routes of protein kinase A. , 2004, Physiological reviews.