Enhanced Quantum Dot Emission for Luminescent Solar Concentrators Using Plasmonic Interaction

Plasmonic excitation enhanced fluorescence of CdSe/ZnS core-shell quantum dots (QDs) in the presence of Au nanoparticles (NPs) has been studied for application in quantum dot solar concentrator (QDSC) devices. We observe that there is an optimal concentration of Au NPs that gives a maximum 53% fluorescence emission enhancement for the particular QD/Au NP composite studied. The optimal concentration depends on the coupling and spacing between neighboring QDs and Au NPs. We show the continuous transition from fluorescence enhancement to quenching, depending on Au NP concentration. The locally enhanced electromagnetic field induced by the surface plasmon resonance in the Au NPs leads to an increased excitation rate for the QDs. This is evidenced by excitation wavelength dependent fluorescence enhancement, where the locally enhanced field around the Au NPs is more pronounced close to the surface plasmon resonance (SPR) wavelength. However, at higher concentrations of Au NPs non-radiative energy transfer from the QDs to the Au NPs particles leads to a decrease of the emission, which is confirmed by detection of both a double exponential lifetime decay in, and a decrease in the lifetime of the QDs. The overall fluorescence emission enhancement depends on these competing effects; increased excitation rate and non-radiative energy transfer.

[1]  A. Goetzberger,et al.  Solar energy conversion with fluorescent collectors , 1977 .

[2]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[3]  Wilfried van Sark,et al.  Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators , 2011 .

[4]  M. Green,et al.  Improving solar cell efficiencies by down-conversion of high-energy photons , 2002 .

[5]  Philip C. Eames,et al.  Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices , 2007 .

[6]  Volker Wittwer,et al.  Fluorescent planar collector-concentrators for solar energy conversion , 1979 .

[7]  Sue A. Carter,et al.  Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting , 2007 .

[8]  N. J. Ekins-Daukes,et al.  Quantum dot solar concentrators , 2004 .

[9]  N.J. Ekins-Daukes,et al.  The quantum dot concentrator: theory and results , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[10]  Sheldon T. Bailey,et al.  Photo-stability and performance of CdSe/ZnS quantum dots in luminescent solar concentrators , 2009 .

[11]  A. Alivisatos,et al.  Electrical Studies of Semiconductor-Nanocrystal Colloids , 1998 .

[12]  W. Barnes,et al.  Fluorescence near interfaces: The role of photonic mode density , 1998 .

[13]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[14]  Daniel Kleppner,et al.  Inhibited Spontaneous Emission , 1981 .

[15]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[16]  Keiko Munechika,et al.  Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. , 2007, Nano letters.

[17]  M. Tazawa,et al.  Influence of dielectric properties of a substrate upon plasmon resonance spectrum of supported Ag nanoparticles , 2006 .

[18]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[19]  Keith W. J. Barnham,et al.  Quantum-dot concentrator and thermodynamic model for the global redshift , 2000 .

[20]  A. Goetzberger Fluorescent solar energy collectors: Operating conditions with diffuse light , 1978 .

[21]  Igor Nabiev,et al.  Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids , 2002 .

[22]  Michael Wahl,et al.  Time-Correlated Single Photon Counting , 2009 .

[23]  Jean-Jacques Greffet,et al.  Resonant optical antennas , 2013, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[24]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[25]  Nicholas J. Ekins-Daukes,et al.  A new approach to modelling quantum dot concentrators , 2003 .

[26]  Nathan S. Lewis,et al.  Spectral tuning of plasmon-enhanced silicon quantum dot luminescence , 2006 .

[27]  A. Chatten,et al.  NEW CONCEPT FOR LUMINESCENT SOLAR CONCENTRATORS , 2010 .

[28]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[29]  David R. Smith,et al.  Dramatic localized electromagnetic enhancement in plasmon resonant nanowires , 2001 .

[30]  Domenico Pacifici,et al.  Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters. , 2005, Nano letters.

[31]  Magnus Willander,et al.  Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids , 2002 .

[32]  J. Lambe,et al.  Luminescent greenhouse collector for solar radiation. , 1976, Applied optics.

[33]  Brian Norton,et al.  Quantum dot solar concentrator: Device optimisation using spectroscopic techniques , 2007 .

[34]  Younan Xia,et al.  Excitation enhancement of CdSe quantum dots by single metal nanoparticles , 2008 .

[35]  Volker Wittwer,et al.  Theory of fluorescent planar concentrators and experimental results , 1981 .

[36]  Colette McDonagh,et al.  Plasmonic enhancement of fluorescence for sensor applications , 2005 .

[37]  Frank W. Wise,et al.  Optical Properties of Colloidal PbSe Nanocrystals , 2002 .

[38]  B. Richards,et al.  Advanced Material Concepts for Luminescent Solar Concentrators , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  K. Drexhage,et al.  IV Interaction of Light with Monomolecular Dye Layers , 1974 .

[40]  Wenzel,et al.  Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning , 2000, Physical review letters.