A conservative model for unsteady flows in deformable closed pipes and its implicit second-order finite volume discretisation
暂无分享,去创建一个
[1] C. Bourdarias,et al. An implicit finite volume scheme for unsteady flows in deformable pipe-lines , 2009 .
[2] Yves Zech,et al. Numerical and experimental water transients in sewer pipes , 1997 .
[3] Anela Kumbaro. Modélisation, analyse mathématique et numérique des modèles bi-fluides d'écoulement diphasique. , 1992 .
[4] Christian Bourdarias,et al. A finite volume scheme for a model coupling free surface and pressurised flows in pipes , 2007 .
[6] T. Gallouët,et al. Some approximate Godunov schemes to compute shallow-water equations with topography , 2003 .
[7] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[8] Charles C. S. Song,et al. Transient Mixed-Flow Models for Storm Sewers , 1983 .
[9] Thierry Gallouët,et al. Un schéma de Godunov approché , 1996 .
[10] Stanley Osher,et al. Large-scale computations in fluid mechanics , 1985 .
[11] B. V. Leer,et al. Towards the Ultimate Conservative Difference Scheme , 1997 .
[12] J. Greenberg,et al. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .
[13] B. V. Leer,et al. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow , 1977 .
[14] Adam Adamkowski. Analysis of Transient Flow in Pipes With Expanding or Contracting Sections , 2003 .
[15] T. N. Stevenson,et al. Fluid Mechanics , 2021, Nature.
[16] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[17] Mark J. Sundquist,et al. Fixed-Grid Characteristics for Pipeline Transients , 1977 .
[18] P. Lax. Hyperbolic systems of conservation laws , 2006 .
[19] J. A. Cunge,et al. Intégration numérique des équations d'écoulement de barré de Saint-Venant par un schéma implicite de différences finies , 1964 .