A conservative model for unsteady flows in deformable closed pipes and its implicit second-order finite volume discretisation

Abstract We present a one-dimensional model for compressible flows in a deformable pipe which is an alternative to the Allievi equations and is intended to be coupled in a “natural way” with the shallow water equations to simulate mixed flows. The numerical simulation is performed using a second-order linearly implicit scheme adapted from the Roe scheme. The validation is performed in the case of water hammer in a rigid pipe: we compare the numerical results provided by an industrial code with those of our spatial second-order implicit scheme. It appears that the maximum value of the pressure within the pipe for large CFL numbers and a coarse discretisation is accurately computed.

[1]  C. Bourdarias,et al.  An implicit finite volume scheme for unsteady flows in deformable pipe-lines , 2009 .

[2]  Yves Zech,et al.  Numerical and experimental water transients in sewer pipes , 1997 .

[3]  Anela Kumbaro Modélisation, analyse mathématique et numérique des modèles bi-fluides d'écoulement diphasique. , 1992 .

[4]  Christian Bourdarias,et al.  A finite volume scheme for a model coupling free surface and pressurised flows in pipes , 2007 .

[5]  Convergence d'un schéma à profils stationnaires pour les équations quasi linéaires du premier ordre avec termes sourcesConvergence of a stationary profiles scheme for the first order quasilinear equations with source terms , 2001 .

[6]  T. Gallouët,et al.  Some approximate Godunov schemes to compute shallow-water equations with topography , 2003 .

[7]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[8]  Charles C. S. Song,et al.  Transient Mixed-Flow Models for Storm Sewers , 1983 .

[9]  Thierry Gallouët,et al.  Un schéma de Godunov approché , 1996 .

[10]  Stanley Osher,et al.  Large-scale computations in fluid mechanics , 1985 .

[11]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[12]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[13]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow , 1977 .

[14]  Adam Adamkowski Analysis of Transient Flow in Pipes With Expanding or Contracting Sections , 2003 .

[15]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[16]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[17]  Mark J. Sundquist,et al.  Fixed-Grid Characteristics for Pipeline Transients , 1977 .

[18]  P. Lax Hyperbolic systems of conservation laws , 2006 .

[19]  J. A. Cunge,et al.  Intégration numérique des équations d'écoulement de barré de Saint-Venant par un schéma implicite de différences finies , 1964 .