Second-order cover inequalities
暂无分享,去创建一个
[1] A M Geoffi-Ion. AN IMPROVED IMPLICIT ENUMERATION APPROACH FOR INTEGER PROGRAMMING , 2005 .
[2] Fred W. Glover,et al. Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions , 2002, Ann. Oper. Res..
[3] Michel Vasquez,et al. Improved results on the 0-1 multidimensional knapsack problem , 2005, Eur. J. Oper. Res..
[4] Martin W. P. Savelsbergh,et al. Lifted Cover Inequalities for 0-1 Integer Programs: Complexity , 1999, INFORMS J. Comput..
[5] María Auxilio Osorio Lama,et al. Mixed Logical-linear Programming , 1999, Discret. Appl. Math..
[6] Peter L. Hammer,et al. Facet of regular 0–1 polytopes , 1975, Math. Program..
[7] F. Glover. A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .
[8] Ellis L. Johnson,et al. Solving Large-Scale Zero-One Linear Programming Problems , 1983, Oper. Res..
[9] Laurence A. Wolsey,et al. Faces for a linear inequality in 0–1 variables , 1975, Math. Program..
[10] Egon Balas,et al. Facets of the knapsack polytope , 1975, Math. Program..
[11] Fred W. Glover,et al. Generating Cuts from Surrogate Constraint Analysis for Zero-One and Multiple Choice Programming , 1997, Comput. Optim. Appl..
[12] John N. Hooker,et al. Logic-Based Methods for Optimization , 1994, PPCP.
[13] Martin W. P. Savelsbergh,et al. MINTO, a mixed INTeger optimizer , 1994, Oper. Res. Lett..
[14] Fred Glover,et al. Flows in Arborescences , 1971 .
[15] Fred W. Glover,et al. Exploiting nested inequalities and surrogate constraints , 2007, Eur. J. Oper. Res..
[16] Hanif D. Sherali,et al. Sequential and Simultaneous Liftings of Minimal Cover Inequalities for Generalized Upper Bound Constrained Knapsack Polytopes , 1995, SIAM J. Discret. Math..
[17] Martin W. P. Savelsbergh,et al. Preprocessing and Probing Techniques for Mixed Integer Programming Problems , 1994, INFORMS J. Comput..