Misc-GAN: A Multi-scale Generative Model for Graphs

Characterizing and modeling the distribution of a particular family of graphs are essential for3studying real-world networks in a broad spectrum of disciplines, ranging from market-basket4analysis to biology, from social science to neuroscience. However, it is unclear how to model5the complex graph organizations and learn generative models from an observed graph. The6key challenges come from the non-unique, high-dimensional nature of graphs, as well as the7graph community structures at different granularity levels. In this paper, we propose a multi-scale8graph generative model namedMisc-GAN, which models the underlying distribution of the graph9structures at different levels of granularity, and then ‘transfers’ such hierarchical distribution from10the graphs in the domain of interest to a unique graph representation. The empirical results on11both synthetic and real data sets demonstrate the effectiveness of the proposed framework.

[1]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[2]  Stefano Ermon,et al.  Graphite: Iterative Generative Modeling of Graphs , 2018, ICML.

[3]  Christos Faloutsos,et al.  Kronecker Graphs: An Approach to Modeling Networks , 2008, J. Mach. Learn. Res..

[4]  Leonidas J. Guibas,et al.  Unsupervised Multi-class Joint Image Segmentation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Razvan Pascanu,et al.  Learning Deep Generative Models of Graphs , 2018, ICLR 2018.

[6]  Max Welling,et al.  Variational Graph Auto-Encoders , 2016, ArXiv.

[7]  Trevor Darrell,et al.  Adversarial Discriminative Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  R. Coifman,et al.  Diffusion Wavelets , 2004 .

[9]  Nikos Komodakis,et al.  GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders , 2018, ICANN.

[10]  Marc Pollefeys,et al.  Disambiguating visual relations using loop constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Leonidas J. Guibas,et al.  Image Co-segmentation via Consistent Functional Maps , 2013, 2013 IEEE International Conference on Computer Vision.

[12]  Alexei A. Efros,et al.  Learning Dense Correspondence via 3D-Guided Cycle Consistency , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Stephan Günnemann,et al.  NetGAN: Generating Graphs via Random Walks , 2018, ICML.

[14]  Jimeng Sun,et al.  Fast Random Walk Graph Kernel , 2012, SDM.

[15]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[16]  Ilya Safro,et al.  Multiscale approach for the network compression-friendly ordering , 2010, J. Discrete Algorithms.

[17]  Jun Guo,et al.  SFViz: interest-based friends exploration and recommendation in social networks , 2011, VINCI '11.

[18]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Leonidas J. Guibas,et al.  Consistent Shape Maps via Semidefinite Programming , 2013, SGP '13.

[20]  Weiyi Liu,et al.  Learning Graph Topological Features via GAN , 2017, IEEE Access.

[21]  Adam Finkelstein,et al.  PairedCycleGAN: Asymmetric Style Transfer for Applying and Removing Makeup , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[22]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[23]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[24]  Charu C. Aggarwal,et al.  Graph Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[25]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[26]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[27]  Ilya Safro,et al.  Relaxation-based coarsening and multiscale graph organization , 2010, Multiscale Model. Simul..

[28]  Satu Elisa Schaeffer,et al.  Graph Clustering , 2017, Encyclopedia of Machine Learning and Data Mining.

[29]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[30]  Jure Leskovec,et al.  GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models , 2018, ICML.

[31]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Pat Hanrahan,et al.  Multiscale visualization using data cubes , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[33]  Yong Jae Lee,et al.  FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Wei-Dong Dang,et al.  Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series , 2016, Scientific Reports.

[35]  J. Lee,et al.  MULTISCALE ANALYSIS OF TIME SERIES OF GRAPHS , 2010 .

[36]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[37]  Noah Snavely,et al.  Network Principles for SfM: Disambiguating Repeated Structures with Local Context , 2013, 2013 IEEE International Conference on Computer Vision.

[38]  Jure Leskovec,et al.  {SNAP Datasets}: {Stanford} Large Network Dataset Collection , 2014 .

[39]  D. Bartuschat Algebraic Multigrid , 2007 .

[40]  Nuno Vasconcelos,et al.  A Kullback-Leibler Divergence Based Kernel for SVM Classification in Multimedia Applications , 2003, NIPS.

[41]  Eliezer M. Fich,et al.  Financial Fraud, Director Reputation, and Shareholder Wealth , 2006 .

[42]  Regina Barzilay,et al.  Aspect-augmented Adversarial Networks for Domain Adaptation , 2017, TACL.

[43]  Jianbo Shi,et al.  Spectral segmentation with multiscale graph decomposition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[44]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[45]  Tomas Pfister,et al.  Learning from Simulated and Unsupervised Images through Adversarial Training , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[47]  Chen Zhang,et al.  Multi-view Adversarially Learned Inference for Cross-domain Joint Distribution Matching , 2018, KDD.

[48]  Oisin Mac Aodha,et al.  Unsupervised Monocular Depth Estimation with Left-Right Consistency , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Jure Leskovec,et al.  GraphRNN: A Deep Generative Model for Graphs , 2018, ICML 2018.

[50]  Ronen Basri,et al.  Fast multiscale image segmentation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).