Canonical Coherent States

This chapter is devoted to a fairly detailed examination of the quintessential example of coherent states — the canonical coherent states. It is fair to say that the entire subject of coherent states developed by analogy from this example. As mentioned in Chapter 1, this set of states, or rays in the Hilbert space of a quantum mechanical system, was originally discovered by Schrodinger transition from quantum to classical mechanics. They are endowed with a remarkable array of interesting properties, some of which we shall survey in this chapter. Apart from initiating the discussion, this will also help us in motivating the various mathematical directions in which one can try to generalize the notion of a CS.

[1]  F. Berezin General concept of quantization , 1975 .

[2]  F. H. Szafraniec,et al.  Squeezed states and Hermite polynomials in a complex variable , 2013, 1308.4730.

[3]  Sudarshan,et al.  Gaussian pure states in quantum mechanics and the symplectic group. , 1988, Physical review. A, General physics.

[4]  M C TeichT Squeezed states of light , 1989 .

[5]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[6]  S. Ali,et al.  QUANTIZATION METHODS: A GUIDE FOR PHYSICISTS AND ANALYSTS , 2004, math-ph/0405065.

[7]  Deguang Han,et al.  Frames Associated with Measurable Spaces , 2003, Adv. Comput. Math..

[8]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[9]  E. Schrödinger Der stetige Übergang von der Mikro- zur Makromechanik , 1926, Naturwissenschaften.

[10]  J. Gazeau,et al.  Quantizations from reproducing kernel spaces , 2012, 1212.3664.

[11]  S. T. Ali Stochastic localization, quantum mechanics on phase space and quantum space-time , 1985 .

[12]  V. Bargmann,et al.  On the Completeness of Coherent States , 1971 .

[13]  A. MacKinnon,et al.  Wavelets, Intermittency and Solar Flare Hard X-rays 1. Local Intermittency Measure in Cascade and Avalanche Scenarios , 2013 .

[14]  Tau-wavelets in the plane , 1998 .

[15]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[16]  J. Glimm,et al.  LOCALLY COMPACT TRANSFORMATION GROUPS( , 1961 .

[17]  D. Walls Squeezed states of light , 1983, Nature.

[18]  M. Teich,et al.  Squeezed state of light , 1989 .

[19]  V. Bargmann On a Hilbert Space of Analytie Functions and an Associated Integral Transform. Part II. A Family of Related Function Spaces Application to Distribution Theory , 1967 .

[20]  Krzysztof Wódkiewicz On the Quantum Mechanics of Squeezed States , 1987 .

[21]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[22]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[23]  Eugenio Bianchi,et al.  Coherent spin-networks , 2009, Physical Review D.

[24]  Habib,et al.  Coherent states via decoherence. , 1993, Physical review letters.

[25]  Jean-Pierre Gazeau,et al.  Finite-dimensional Hilbert space and frame quantization , 2011 .

[26]  E. Prugovec̆ki Relativistic quantum kinematics on stochastic phase spaces for massive particles , 1978 .

[27]  B. P. de Hon,et al.  Recursive evaluation of space-time lattice Green's functions , 2012 .

[28]  P. Busch,et al.  The quantum theory of measurement , 1991 .

[29]  J. Gazeau,et al.  Coherent state quantization of paragrassmann algebras , 2010, 1004.4706.

[30]  James D. Louck,et al.  The Racah-Wigner algebra in quantum theory , 1981 .

[31]  A. Holevo Statistical structure of quantum theory , 2001 .

[32]  H. Yuen Two-photon coherent states of the radiation field , 1976 .

[33]  Anatol Odzijewicz,et al.  {Quantum Algebras and q-Special Functions Related to Coherent States Maps of the Disc , 1998 .

[34]  From Classical to Quantum Mechanics: "How to translate physical ideas into mathematical language" , 2001, quant-ph/0102084.

[35]  C. Helstrom Quantum detection and estimation theory , 1969 .