On Colourings of Hypergraphs Without Monochromatic Fano Planes
暂无分享,去创建一个
Vojtech Rödl | Hanno Lefmann | Mathias Schacht | Yury Person | V. Rödl | H. Lefmann | M. Schacht | Y. Person
[1] Miklós Simonovits,et al. The number of graphs without forbidden subgraphs , 2004, J. Comb. Theory B.
[2] alcun K. grafo. ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .
[3] Miklós Simonovits,et al. Triple Systems Not Containing a Fano Configuration , 2005, Comb. Probab. Comput..
[4] Yoshiharu Kohayakawa,et al. Weak hypergraph regularity and linear hypergraphs , 2010, J. Comb. Theory, Ser. B.
[5] Vojtech Rödl,et al. The Uniformity Lemma for hypergraphs , 1992, Graphs Comb..
[6] Benny Sudakov,et al. The Turán Number Of The Fano Plane , 2005, Comb..
[7] Ph. G. Kolaitis,et al. Asymptotic enumeration and a 0-1 law for $m$-clique free graphs , 1985 .
[8] Miklós Simonovits,et al. The typical structure of graphs without given excluded subgraphs , 2009 .
[9] Ph. G. Kolaitis,et al. _{+1}-free graphs: asymptotic structure and a 0-1 law , 1987 .
[10] Vojtech Rödl,et al. The asymptotic number of triple systems not containing a fixed one , 2001, Discret. Math..
[11] Mathias Schacht,et al. Almost all hypergraphs without Fano planes are bipartite , 2009, SODA.
[12] Vojtech Rödl,et al. The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..
[13] József Balogh,et al. A remark on the number of edge colorings of graphs , 2006, Eur. J. Comb..
[14] P. Erdos. Some New Applications Ok Probability Methods to Combinatorial Analysis and Graph Theory , 2022 .
[15] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[16] V. Rödl,et al. Extremal Hypergraph Problems and the Regularity Method , 2006 .
[17] Fan Chung Graham,et al. Regularity Lemmas for Hypergraphs and Quasi-randomness , 1991, Random Struct. Algorithms.
[18] N. Alon,et al. The Number of Edge Colorings with no Monochromatic Cliques , 2004 .
[19] Fan Chung. Regularity lemmas for hypergraphs and quasi-randomness , 1991 .
[20] Raphael Yuster,et al. The number of edge colorings with no monochromatic triangle , 1996, J. Graph Theory.