On Colourings of Hypergraphs Without Monochromatic Fano Planes

For k-uniform hypergraphs F and H and an integer r, let cr,F(H) denote the number of r-colourings of the set of hyperedges of H with no monochromatic copy of F, and let $c_{r,F}(n)=\max_{H\in\ccHn} c_{r,F}(H)$ , where the maximum runs over all k-uniform hypergraphs on n vertices. Moreover, let ex(n,F) be the usual extremal or Turan function, i.e., the maximum number of hyperedges of an n-vertex k-uniform hypergraph which contains no copy of F. For complete graphs F = Kl and r = 2, Erdős and Rothschild conjectured that c2,Kl(n) = 2ex(n,Kl). This conjecture was proved by Yuster for l = 3 and by Alon, Balogh, Keevash and Sudakov for arbitrary l. In this paper, we consider the question for hypergraphs and show that, in the special case when F is the Fano plane and r = 2 or 3, then cr,F(n) = rex(n,F), while cr,F(n) ≫ rex(n,F) for r ≥ 4.

[1]  Miklós Simonovits,et al.  The number of graphs without forbidden subgraphs , 2004, J. Comb. Theory B.

[2]  alcun K. grafo ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .

[3]  Miklós Simonovits,et al.  Triple Systems Not Containing a Fano Configuration , 2005, Comb. Probab. Comput..

[4]  Yoshiharu Kohayakawa,et al.  Weak hypergraph regularity and linear hypergraphs , 2010, J. Comb. Theory, Ser. B.

[5]  Vojtech Rödl,et al.  The Uniformity Lemma for hypergraphs , 1992, Graphs Comb..

[6]  Benny Sudakov,et al.  The Turán Number Of The Fano Plane , 2005, Comb..

[7]  Ph. G. Kolaitis,et al.  Asymptotic enumeration and a 0-1 law for $m$-clique free graphs , 1985 .

[8]  Miklós Simonovits,et al.  The typical structure of graphs without given excluded subgraphs , 2009 .

[9]  Ph. G. Kolaitis,et al.  _{+1}-free graphs: asymptotic structure and a 0-1 law , 1987 .

[10]  Vojtech Rödl,et al.  The asymptotic number of triple systems not containing a fixed one , 2001, Discret. Math..

[11]  Mathias Schacht,et al.  Almost all hypergraphs without Fano planes are bipartite , 2009, SODA.

[12]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[13]  József Balogh,et al.  A remark on the number of edge colorings of graphs , 2006, Eur. J. Comb..

[14]  P. Erdos Some New Applications Ok Probability Methods to Combinatorial Analysis and Graph Theory , 2022 .

[15]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[16]  V. Rödl,et al.  Extremal Hypergraph Problems and the Regularity Method , 2006 .

[17]  Fan Chung Graham,et al.  Regularity Lemmas for Hypergraphs and Quasi-randomness , 1991, Random Struct. Algorithms.

[18]  N. Alon,et al.  The Number of Edge Colorings with no Monochromatic Cliques , 2004 .

[19]  Fan Chung Regularity lemmas for hypergraphs and quasi-randomness , 1991 .

[20]  Raphael Yuster,et al.  The number of edge colorings with no monochromatic triangle , 1996, J. Graph Theory.