Distribution of the Native Freshwater Mussels Anodonta nuttalliana and Margaritifera falcata in Utah and Western Wyoming Using Environmental DNA

Abstract. Native freshwater mussels have seen dramatic declines in western North America, but effective monitoring and management of these organisms can be difficult due to their cryptic nature. We used environmental DNA sampling—a sensitive, noninvasive genetic technique—to examine the contemporary distribution of 2 native freshwater mussel species, Anodonta nuttalliana and Margaritifera falcata, in Utah and western Wyoming. We sampled water bodies with historical presence, as well as additional water bodies and locations with promising habitat for the species. We detected A. nuttalliana from 39% of the 31 water bodies sampled and M. falcata from 16% of the 25 water bodies sampled. We demonstrated that environmental DNA technology is an efficient method for determining the distributions of freshwater mussels. Resumen. Mejillones de agua dulce nativos han visto reducciones dramáticas en el oeste norteamericano; sin embargo, pueden ser difícil de detectar debido a su comportamiento críptico. Usamos el ADN del ambiente, una técnica genética sensitiva y no invasiva, para examinar la distribución contemporánea de 2 especies de mejillones de agua dulce, Anodonta nuttalliana y Margaritifera falcata, en los estados de Utah y el Oeste de Wyoming. Muestreamos masas de agua con presencias históricas, así como masas de agua adicionales con hábitat para las especies. Detectamos a A. nuttalliana en 39% de 31 masas de agua muestreadas, y M. falcata de 16% de 25 masas de agua muestreadas. Demostramos que la tecnología que implica al ADN del ambiente es un método efectivo de determinar las distribuciones de los mejillones de agua dulce.

[1]  C. Tait,et al.  Detection of four imperiled western North American freshwater mussel species from environmental DNA with multiplex qPCR assays , 2020, bioRxiv.

[2]  James A. Stoeckel,et al.  Growth and survival of juvenile freshwater mussels in streams: Implications for understanding enigmatic mussel declines , 2019, Freshwater Science.

[3]  C. Vaughn,et al.  Drought-Induced, Punctuated Loss of Freshwater Mussels Alters Ecosystem Function Across Temporal Scales , 2019, Front. Ecol. Evol..

[4]  D. Bolster,et al.  Water Flow and Biofilm Cover Influence Environmental DNA Detection in Recirculating Streams. , 2018, Environmental science & technology.

[5]  J. B. Box,et al.  Extinction Risk of Western North American Freshwater Mussels: Anodonta Nuttalliana, the Anodonta Oregonensis/Kennerlyi Clade, Gonidea Angulata, and Margaritifera Falcata , 2017, Freshwater Mollusk Biology and Conservation.

[6]  A. B. Wilson,et al.  Explaining high-diversity death assemblages: Undersampling of the living community, out-of-habitat transport, time-averaging of rare taxa, and local extinction , 2017 .

[7]  K. McKelvey,et al.  An environmental DNA assay for detecting Arctic grayling in the upper Missouri River basin, North America , 2016, Conservation Genetics Resources.

[8]  Anthony Longjas,et al.  Coupling freshwater mussel ecology and river dynamics using a simplified dynamic interaction model , 2016, Freshwater Science.

[9]  K. McKelvey,et al.  A protocol for collecting environmental DNA samples from streams , 2016 .

[10]  A. Weeks,et al.  I Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. , 2015, Ecological applications : a publication of the Ecological Society of America.

[11]  Adam J. Sepulveda,et al.  Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis , 2015 .

[12]  Douglas W. Yu,et al.  Environmental DNA for wildlife biology and biodiversity monitoring. , 2014, Trends in ecology & evolution.

[13]  W. Haag North American Freshwater Mussels: Natural History, Ecology, and Conservation , 2012 .

[14]  K. Mock,et al.  Three deeply divided lineages of the freshwater mussel genus Anodonta in western North America , 2008, Conservation Genetics.

[15]  F. Szalay,et al.  Influence of unionid mussels (Mollusca: Unionidae) on sediment stability: an artifi cial stream study , 2007 .

[16]  K. Cuffey,et al.  Factors controlling the age structure of Margaritifera falcata in 2 northern California streams , 2006, Journal of the North American Benthological Society.

[17]  K. Cuffey,et al.  The functional role of native freshwater mussels in the fluvial benthic environment , 2006 .

[18]  W. Ponder,et al.  The Global Decline of Nonmarine Mollusks , 2004 .

[19]  W. Hoeh,et al.  Genetic diversity and divergence among freshwater mussel (Anodonta) populations in the Bonneville Basin of Utah , 2004, Molecular ecology.

[20]  P. Hovingh Intermountain freshwater mollusks, USA (Margaritifera, Anodonta, Gonidea, Valvata, Ferrissia): geography, conservation, and fish management implications , 2004 .

[21]  C. Vaughn,et al.  The functional role of burrowing bivalves in freshwater ecosystems , 2001 .

[22]  Kevin S. Cummings,et al.  Conservation Status of Freshwater Mussels of the United States and Canada , 1993 .

[23]  I. Lea Descriptions of New Species of the Family Unionidae , 1853 .

[24]  I. Lea Description of New Freshwater and Land Shells , 1839 .