New hybrid genetic algorithms to solve dynamic berth allocation problem

Abstract Berth allocation problem (BAP) is concerned to assign ships to port terminal positions, seeking to minimize the total service time and maximize the quay occupation. A dynamic model with special features is developed to deal with real scenarios from Port Administration of Paranagua and Antonina (APPA), located on the Brazilian coast. To solve the problem, this work proposes two metaheuristics comprise by a novel combination of genetic algorithm and an approximated dynamic programming employed as a local search. Two heuristics for solution space reductions, a confinement procedure in a reduced neighborhood, known as Corridor Method, and an elimination process for unpromising solution regions are designed for local search approach. Case studies present a problem complexity discussion and comparative analysis of the metaheuristics regarding two standard genetic algorithms. The computational experiments explore the optimal solutions for small instances and the best results, solutions variability, and probabilistic plots resorting by ten instances based on real data available by APPA. The results show the reliability of the metaheuristics to deal with large instances and tight schedules in busy port systems.

[1]  Kap Hwan Kim,et al.  Berth scheduling by simulated annealing , 2003 .

[2]  Luiz Antonio Nogueira Lorena,et al.  Clustering Search Heuristic for Solving a Continuous Berth Allocation Problem , 2012, EvoCOP.

[3]  Christian Bierwirth,et al.  A survey of berth allocation and quay crane scheduling problems in container terminals , 2010, Eur. J. Oper. Res..

[4]  Mihalis M. Golias,et al.  An optimization based genetic algorithm heuristic for the berth allocation problem , 2007, 2007 IEEE Congress on Evolutionary Computation.

[5]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[6]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[7]  Andrew Lim,et al.  The berth planning problem , 1998, Oper. Res. Lett..

[8]  Gilbert Laporte,et al.  Models and Tabu Search Heuristics for the Berth-Allocation Problem , 2005, Transp. Sci..

[9]  R. Bellman Dynamic programming. , 1957, Science.

[10]  Der-Horng Lee,et al.  Heuristics for quay crane scheduling at indented berth , 2011 .

[11]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[12]  Yusuf Kuvvetli,et al.  Differential evolution based meta-heuristic algorithm for dynamic continuous berth allocation problem , 2016 .

[13]  M. Sniedovich Dynamic programming : foundations and principles , 2011 .

[14]  Pablo Moscato,et al.  A memetic algorithm for the total tardiness single machine scheduling problem , 2001, Eur. J. Oper. Res..

[15]  Belén Melián-Batista,et al.  Artificial intelligence hybrid heuristic based on tabu search for the dynamic berth allocation problem , 2012, Eng. Appl. Artif. Intell..

[16]  Akio Imai,et al.  The Dynamic Berth Allocation Problem for a Container Port , 2001 .

[17]  Der-Horng Lee,et al.  The continuous Berth Allocation Problem: A Greedy Randomized Adaptive Search Solution , 2010 .

[18]  V. T. Chow,et al.  Discrete Differential Dynamic Programing Approach to Water Resources Systems Optimization , 1971 .

[19]  Rodrigo de Alvarenga Rosa,et al.  Modelo matemático para o Problema de Alocação de Berços em portos com limitações de operação de carga ao longo do cais , 2016 .

[20]  Celso C. Ribeiro,et al.  TTT plots: a perl program to create time-to-target plots , 2007, Optim. Lett..

[21]  Matteo Salani,et al.  Modeling and Solving the Tactical Berth Allocation Problem , 2010 .

[22]  Akio Imai,et al.  BERTH ALLOCATION IN A CONTAINER PORT: USING A CONTINUOUS LOCATION SPACE APPROACH , 2005 .

[23]  Ramón Alvarez-Valdés,et al.  The continuous Berth Allocation Problem in a container terminal with multiple quays , 2015, Expert Syst. Appl..

[24]  Chung-Piaw Teo,et al.  Berth management in container terminal: the template design problem , 2006, OR Spectr..

[25]  Akio Imai,et al.  Berth allocation with service priority , 2003 .

[26]  Ching-Jung Ting,et al.  Particle swarm optimization algorithm for the berth allocation problem , 2014, Expert Syst. Appl..

[27]  Ramón Alvarez-Valdés,et al.  A biased random-key genetic algorithm for the time-invariant berth allocation and quay crane assignment problem , 2017, Expert Syst. Appl..

[28]  Natasa Kovac METAHEURISTIC APPROACHES FOR THE BERTH ALLOCATION PROBLEM , 2017 .

[29]  Mihalis M. Golias,et al.  Robust berth scheduling at marine container terminals via hierarchical optimization , 2014, Comput. Oper. Res..

[30]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[31]  Michel Bierlaire,et al.  Exact and heuristic methods to solve the berth allocation problem in bulk ports , 2013 .

[32]  Luiz Antonio Nogueira Lorena,et al.  Clustering Search for the Berth Allocation Problem , 2012, Expert Syst. Appl..

[33]  Maria Flavia Monaco,et al.  The Berth Allocation Problem: A Strong Formulation Solved by a Lagrangean Approach , 2007, Transp. Sci..

[34]  Maxim A. Dulebenets,et al.  An Adaptive Island Evolutionary Algorithm for the berth scheduling problem , 2020, Memetic Comput..

[35]  Ceyda Oguz,et al.  A Note on Formulations of Static and Dynamic Berth Allocation Problems , 2003 .

[36]  Robert E. Larson,et al.  State increment dynamic programming , 1968 .

[37]  Akio Imai,et al.  Berth allocation planning in the public berth system by genetic algorithms , 2001, Eur. J. Oper. Res..

[38]  Akio Imai,et al.  Berthing ships at a multi-user container terminal with a limited quay capacity , 2008 .

[39]  David C. Hoaglin,et al.  Some Implementations of the Boxplot , 1989 .

[40]  Michel Bierlaire,et al.  A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports , 2014, Eur. J. Oper. Res..

[41]  Jesper Larsen,et al.  Models for the discrete berth allocation problem: A computational comparison , 2011 .

[42]  Flávia Barbosaa,et al.  A BRIEF SURVEY OF THE BERTH ALLOCATION PROBLEM , 2016 .

[43]  Christiano Lyra,et al.  A dynamic programming approach for optimal allocation of maintenance resources on power distribution networks , 2013, 2013 IEEE Power & Energy Society General Meeting.

[44]  Akebo Yamakami,et al.  The use of frontier techniques to identify efficient solutions for the Berth Allocation Problem solved with a hybrid evolutionary algorithm , 2019, Comput. Oper. Res..