Left-invariant diffusions on R^3 x S^2 and their application to crossing-preserving smoothing on HARDI-images

In previous work we studied linear and nonlinear left-invariant diffusion equations on the 2D Euclidean motion group SE(2), for the purpose of crossing-preserving coherence-enhancing diffusion on 2D images. In this article we study left-invariant diffusion on the 3D Euclidean motion group SE(3) and its application to crossing-preserving smoothing of high angular resolution diffusion imaging (HARDI), which is a recent magnetic resonance imaging (MRI) technique for imaging water diffusion processes in fibrous tissues such as brain white matter and muscles. The linear left-invariant (convection-)diffusions are forward Kolmogorov equations of Brownian motions on the space R3 o S2 of positions and orientations embedded in SE(3) and can be solved by R3 o S2-convolution with the corresponding Green’s functions. We provide analytic approximation formulae and explicit sharp Gaussian estimates for these Green’s functions. In our design and analysis for appropriate (non-linear) convection-diffusions on HARDI-data we put emphasis on the underlying differential geometry on SE(3). We write our left-invariant diffusions in covariant derivatives on SE(3) using the Cartan-connection. This Cartan-connection has constant curvature and constant torsion, and so have the exponential curves which are the auto-parallels along which our left-invariant diffusion takes place. We provide experiments of our crossing-preserving Euclidean-invariant diffusions on artificial HARDI-data containing crossing-fibers.

[1]  Lance R. Williams,et al.  Characterizing the distribution of completion shapes with corners using a mixture of random processes , 2000, Pattern Recognit..

[2]  Stefan Kunis,et al.  Fast spherical Fourier algorithms , 2003 .

[3]  R. Duits,et al.  The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2D-Euclidean motion group , 2007 .

[4]  R. Duits,et al.  Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part I: Linear left-invariant diffusion equations on SE(2) , 2010 .

[5]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[6]  Giovanna Citti,et al.  A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.

[7]  Remco Duits,et al.  Crossing-Preserving Coherence-Enhancing Diffusion on Invertible Orientation Scores , 2009, International Journal of Computer Vision.

[8]  B. Gaveau Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents , 1977 .

[9]  Steven W. Zucker,et al.  Sketches with Curvature: The Curve Indicator Random Field and Markov Processes , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Lmj Luc Florack,et al.  Decomposition of High Angular Resolution Diffusion Images into a Sum of Self-Similar Polynomials on the Sphere , 2008 .

[11]  Waldemar Hebisch,et al.  Estimates on the semigroups generated by left invariant operators on Lie groups. , 1992 .

[12]  Lance R. Williams,et al.  Euclidean Group Invariant Computation of Stochastic Completion Fields Using Shiftable-Twistable Functions , 2000, Journal of Mathematical Imaging and Vision.

[13]  R. Duits,et al.  Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part II: Non-linear left-invariant diffusions on invertible orientation scores , 2010 .

[14]  Luc Florack,et al.  Tikhonov regularization versus scale space: a new result [image processing applications] , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[15]  Michael Felsberg,et al.  Image Analysis and Reconstruction using a Wavelet Transform Constructed from a Reducible Representation of the Euclidean Motion Group , 2007, International Journal of Computer Vision.

[16]  Bernhard Burgeth,et al.  Scale Spaces on Lie Groups , 2007, SSVM.

[17]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[18]  van Ma Markus Almsick,et al.  Context models of lines and contours , 2007 .

[19]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[20]  Duan Xu,et al.  Q‐ball reconstruction of multimodal fiber orientations using the spherical harmonic basis , 2006, Magnetic resonance in medicine.

[21]  B. H. Romeny,et al.  Invertible Orientation Scores as an Application of Generalized Wavelet Theory , 2007, Pattern Recognition and Image Analysis.

[22]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  astronomy Physics,et al.  Principe de Moindre Action , 2010 .

[24]  S. Zucker,et al.  The curve indicator random field , 2001 .

[25]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[26]  Baba C. Vemuri,et al.  Extracting Tractosemas from a Displacement Probability Field for Tractography in DW-MRI , 2008, MICCAI.

[27]  Remco Duits,et al.  Line Enhancement and Completion via Linear Left Invariant Scale Spaces on SE(2) , 2009, SSVM.

[28]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[29]  Wolfgang Arendt,et al.  Integral representations of resolvents and semigroups , 1994 .

[30]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[31]  Joachim Weickert,et al.  Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.

[32]  Luc Florack,et al.  Codomain scale space and regularization for high angular resolution diffusion imaging , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[33]  G. Chirikjian,et al.  Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups , 2000 .

[34]  J. Meixner,et al.  Mathieusche Funktionen und Sphäroidfunktionen , 1954 .

[35]  Remco Duits,et al.  Nonlinear Diffusion on the 2D Euclidean Motion Group , 2007, SSVM.

[36]  D. Mumford Elastica and Computer Vision , 1994 .

[37]  D. Healy,et al.  Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .

[38]  Luc Florack,et al.  On the Axioms of Scale Space Theory , 2004, Journal of Mathematical Imaging and Vision.

[39]  Elias M. Stein,et al.  Fundamental solutions and harmonic analysis on nilpotent groups , 1990 .

[40]  E. Franken Enhancement of crossing elongated structures in images , 2008 .

[41]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.