Unravelling glutathione conjugate catabolism in Saccharomyces cerevisiae: the role of glutathione/dipeptide transporters and vacuolar function in the release of volatile sulfur compounds 3-mercaptohexan-1-ol and 4-mercapto-4-methylpentan-2-one

[1]  A. Couloux,et al.  Evolutionary Advantage Conferred by an Eukaryote-to-Eukaryote Gene Transfer Event in Wine Yeasts , 2015, Molecular biology and evolution.

[2]  D. Jeffery,et al.  Simple quantitative determination of potent thiols at ultratrace levels in wine by derivatization and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. , 2015, Analytical chemistry.

[3]  P. Fernández-Zurbano,et al.  Direct accurate analysis of cysteinylated and glutathionylated precursors of 4-mercapto-4-methyl-2-pentanone and 3-mercaptohexan-1-ol in must by ultrahigh performance liquid chromatography coupled to mass spectrometry. , 2014, Analytica chimica acta.

[4]  Bryan-Joseph San Luis,et al.  Mapping the functional yeast ABC transporter interactome , 2013, Nature chemical biology.

[5]  R. Gardner,et al.  New precursor of 3-mercaptohexan-1-ol in grape juice: thiol-forming potential and kinetics during early stages of must fermentation. , 2013, Journal of agricultural and food chemistry.

[6]  P. Marullo,et al.  Enhancement of volatile thiol release of Saccharomyces cerevisiae strains using molecular breeding , 2013, Applied Microbiology and Biotechnology.

[7]  R. Fratti,et al.  The yeast vacuolar ABC transporter Ybt1p regulates membrane fusion through Ca2+ transport modulation. , 2012, The Biochemical journal.

[8]  S. Sengupta,et al.  Mammalian proapoptotic factor ChaC1 and its homologues function as γ‐glutamyl cyclotransferases acting specifically on glutathione , 2012, EMBO reports.

[9]  Markus J. Tamás,et al.  Glutathione serves an extracellular defence function to decrease arsenite accumulation and toxicity in yeast , 2012, Molecular microbiology.

[10]  A. Kondo,et al.  Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter , 2012, Applied Microbiology and Biotechnology.

[11]  H. Kaur,et al.  Glutathione Degradation by the Alternative Pathway (DUG Pathway) in Saccharomyces cerevisiae Is Initiated by (Dug2p-Dug3p)2 Complex, a Novel Glutamine Amidotransferase (GATase) Enzyme Acting on Glutathione* , 2012, The Journal of Biological Chemistry.

[12]  M. Santiago,et al.  The yeast IRC7 gene encodes a β-lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine. , 2011, Food microbiology.

[13]  P. Blaiseau,et al.  Gex1 is a yeast glutathione exchanger that interferes with pH and redox homeostasis , 2011, Molecular biology of the cell.

[14]  P. Kane,et al.  Consequences of Loss of Vph1 Protein-containing Vacuolar ATPases (V-ATPases) for Overall Cellular pH Homeostasis* , 2011, The Journal of Biological Chemistry.

[15]  V. Higgins,et al.  Contribution of cysteine and glutathione conjugates to the formation of the volatile thiols 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA) during fermentation by Saccharomyces cerevisiae , 2011 .

[16]  S. Schmidt,et al.  Impacts of variations in elemental nutrient concentration of Chardonnay musts on Saccharomyces cerevisiae fermentation kinetics and wine composition , 2011, Applied Microbiology and Biotechnology.

[17]  D. Jeffery,et al.  Application of a modified method for 3-mercaptohexan-1-ol determination to investigate the relationship between free thiol and related conjugates in grape juice and wine. , 2011, Journal of agricultural and food chemistry.

[18]  A. Goffeau,et al.  Vmr 1p is a novel vacuolar multidrug resistance ABC transporter in Saccharomyces cerevisiae. , 2010, FEMS yeast research.

[19]  D. Jeffery,et al.  Selective determination of volatile sulfur compounds in wine by gas chromatography with sulfur chemiluminescence detection. , 2010, Journal of agricultural and food chemistry.

[20]  A. Razungles,et al.  Identification and quantification by LC–MS/MS of a new precursor of 3-mercaptohexan-1-ol (3MH) using stable isotope dilution assay: Elements for understanding the 3MH production in wine , 2010 .

[21]  D. Jeffery,et al.  Analysis of precursors to wine odorant 3-mercaptohexan-1-ol using HPLC-MS/MS: resolution and quantitation of diastereomers of 3-S-cysteinylhexan-1-ol and 3-S-glutathionylhexan-1-ol. , 2010, Journal of agricultural and food chemistry.

[22]  Antonio G. Cordente,et al.  Synthesis of wine thiol conjugates and labeled analogues: fermentation of the glutathione conjugate of 3-mercaptohexan-1-ol yields the corresponding cysteine conjugate and free thiol. , 2010, Journal of agricultural and food chemistry.

[23]  C. Paumi,et al.  ABC Transporters in Saccharomyces cerevisiae and Their Interactors: New Technology Advances the Biology of the ABCC (MRP) Subfamily , 2009, Microbiology and Molecular Biology Reviews.

[24]  Christophe Junot,et al.  Dug1p Is a Cys-Gly Peptidase of the γ-Glutamyl Cycle of Saccharomyces cerevisiae and Represents a Novel Family of Cys-Gly Peptidases , 2009, Journal of Biological Chemistry.

[25]  E. Eleutherio,et al.  Glutathione and gamma‐glutamyl transferases are involved in the formation of cadmium–glutathione complex , 2009, FEBS letters.

[26]  M. Goddard,et al.  Co-fermentation with "Pichia Kluyveri" increases varietal thiol concentrations in Sauvignon Blanc , 2009 .

[27]  D. Jeffery,et al.  First identification of 4-S-glutathionyl-4-methylpentan-2-one, a potential precursor of 4-mercapto-4-methylpentan-2-one, in Sauvignon Blanc juice. , 2009, Journal of agricultural and food chemistry.

[28]  D. Dubourdieu,et al.  Nitrogen catabolic repression controls the release of volatile thiols by Saccharomyces cerevisiae during wine fermentation. , 2008, FEMS yeast research.

[29]  K. Howell,et al.  The role of cysteine and cysteine–S conjugates as odour precursors in the flavour and fragrance industry , 2008 .

[30]  I. Cayeux,et al.  Olfactory perception of cysteine-S-conjugates from fruits and vegetables. , 2008, Journal of agricultural and food chemistry.

[31]  J. Salmon,et al.  New insights on 3-mercaptohexanol (3MH) biogenesis in Sauvignon Blanc wines: Cys-3MH and (E)-hexen-2-al are not the major precursors. , 2008, Journal of agricultural and food chemistry.

[32]  J. Salmon,et al.  Nitrogen catabolite repression modulates the production of aromatic thiols characteristic of Sauvignon Blanc at the level of precursor transport. , 2008, FEMS yeast research.

[33]  D. Hartl,et al.  Cascading transcriptional effects of a naturally occurring frameshift mutation in Saccharomyces cerevisiae , 2008, Molecular ecology.

[34]  Sean D. Graney,et al.  Synthesis of the individual diastereomers of the cysteine conjugate of 3-mercaptohexanol (3-MH). , 2008, Journal of agricultural and food chemistry.

[35]  D. Dubourdieu,et al.  Surprising Structural Lability of a Cysteine‐S‐Conjugate Precursor of 4‐Methyl‐4‐sulfanylpentan‐2‐one, a Varietal Aroma in Wine of Vitis vinifera L. cv. Sauvignon Blanc , 2008, Chemistry & biodiversity.

[36]  M. Hauser,et al.  Differential Regulation and Substrate Preferences in Two Peptide Transporters of Saccharomyces cerevisiae , 2007, Eukaryotic Cell.

[37]  I. S. Pretorius,et al.  Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma , 2007, Yeast.

[38]  Dwaipayan Ganguli,et al.  The Alternative Pathway of Glutathione Degradation Is Mediated by a Novel Protein Complex Involving Three New Genes in Saccharomyces cerevisiae , 2007, Genetics.

[39]  I. S. Pretorius,et al.  Modulation of volatile sulfur compounds by wine yeast , 2007, Applied Microbiology and Biotechnology.

[40]  A. Goffeau,et al.  Role of the yeast ABC transporter Yor1p in cadmium detoxification. , 2006, Biochimie.

[41]  D. Dubourdieu,et al.  Stereoisomeric distribution of 3-mercaptohexan-1-ol and 3-mercaptohexyl acetate in dry and sweet white wines made from Vitis vinifera (Var. Sauvignon Blanc and Semillon). , 2006, Journal of agricultural and food chemistry.

[42]  D. Gigot,et al.  Role of γ‐glutamyltranspeptidase in detoxification of xenobiotics in the yeasts Hansenula polymorpha and Saccharomyces cerevisiae , 2006 .

[43]  J. Becker,et al.  Genomewide Screen Reveals a Wide Regulatory Network for Di/Tripeptide Utilization in Saccharomyces cerevisiae , 2006, Genetics.

[44]  D. Dubourdieu,et al.  The Role of Yeasts in Grape Flavor Development during Fermentation: The Example of Sauvignon blanc , 2006, American Journal of Enology and Viticulture.

[45]  I. S. Pretorius,et al.  Genetic Determinants of Volatile-Thiol Release by Saccharomyces cerevisiae during Wine Fermentation , 2005, Applied and Environmental Microbiology.

[46]  A. Panek,et al.  The role of glutathione transferases in cadmium stress. , 2004, Toxicology letters.

[47]  I. Pretorius,et al.  Variation in 4-mercapto-4-methyl-pentan-2-one release by Saccharomyces cerevisiae commercial wine strains. , 2004, FEMS microbiology letters.

[48]  C. Grant,et al.  Genetic and environmental factors influencing glutathione homeostasis in Saccharomyces cerevisiae. , 2004, Molecular biology of the cell.

[49]  R. Kaur,et al.  The glutathione-mediated detoxification pathway in yeast: an analysis using the red pigment that accumulates in certain adenine biosynthetic mutants of yeasts reveals the involvement of novel genes , 2003, Archives of Microbiology.

[50]  D. Dubourdieu,et al.  Sulfur aroma precursor present in S-glutathione conjugate form: identification of S-3-(hexan-1-ol)-glutathione in must from Vitis vinifera L. cv. Sauvignon blanc. , 2002, Journal of agricultural and food chemistry.

[51]  K. Kuchler,et al.  The ATP‐binding cassette (ABC) transporter Bpt1p mediates vacuolar sequestration of glutathione conjugates in yeast , 2002, FEBS letters.

[52]  P. A. Rea,et al.  Localization, Regulation, and Substrate Transport Properties of Bpt1p, a Saccharomyces cerevisiae MRP-Type ABC Transporter , 2002, Eukaryotic Cell.

[53]  M. Penninckx,et al.  gamma-Glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione. , 2001, The Biochemical journal.

[54]  M. Hauser,et al.  Multiplicity and regulation of genes encoding peptide transporters in Saccharomyces cerevisiae , 2001, Molecular membrane biology.

[55]  M. Penninckx,et al.  A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. , 2000, Enzyme and microbial technology.

[56]  S. Delrot,et al.  Hgt1p, a High Affinity Glutathione Transporter from the Yeast Saccharomyces cerevisiae* , 2000, The Journal of Biological Chemistry.

[57]  H. Sies,et al.  Glutathione and its role in cellular functions. , 1999, Free radical biology & medicine.

[58]  D. Dubourdieu,et al.  A New Type of Flavor Precursors in Vitis vinifera L. cv. Sauvignon Blanc: S-Cysteine Conjugates , 1998 .

[59]  J. Becker,et al.  Schizosaccharomyces pombe isp4 encodes a transporter representing a novel family of oligopeptide transporters , 1998, Molecular Microbiology.

[60]  G. Gadd,et al.  Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification. , 1997, FEMS microbiology letters.

[61]  P. A. Rea,et al.  A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[62]  R. Gromadka,et al.  Subtelomeric duplications in Saccharomyces cerevisiae chromosomes III and XI: Topology, arrangements, corrections of sequence and strain‐specific polymorphism , 1996, Yeast.

[63]  P. A. Rea,et al.  The Yeast Cadmium Factor Protein (YCF1) Is a Vacuolar Glutathione S-Conjugate Pump (*) , 1996, The Journal of Biological Chemistry.

[64]  D. Dubourdieu,et al.  Identification of a powerful aromatic component of Vitis vinifera L. var. sauvignon wines: 4‐mercapto‐4‐methylpentan‐2‐one , 1995 .

[65]  J. Becker,et al.  Isolation and characterization of a Saccharomyces cerevisiae peptide transport gene , 1994, Molecular and cellular biology.

[66]  Y. Anraku,et al.  Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae. II. VAM7, a gene for regulating morphogenic assembly of the vacuoles. , 1992, The Journal of biological chemistry.

[67]  K. Engel,et al.  Identification of new sulfur-containing volatiles in yellow passion fruits (Passiflora edulis f. flavicarpa) , 1991 .

[68]  S. Emr,et al.  Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting , 1988, The Journal of cell biology.

[69]  C. Sousa,et al.  ABCC Subfamily Vacuolar Transporters are Involved in Pb (Lead) Detoxification in Saccharomyces cerevisiae , 2014, Applied Biochemistry and Biotechnology.

[70]  Antonio G. Cordente,et al.  Genetic engineering of industrial Saccharomyces cerevisiae strains using a selection/counter-selection approach. , 2014, Methods in molecular biology.

[71]  R. Gardner,et al.  Yeast genes involved in sulfur and nitrogen metabolism affect the production of volatile thiols from Sauvignon Blanc musts , 2012, Applied Microbiology and Biotechnology.

[72]  Antonio G. Cordente,et al.  Mercaptohexan-1-ol during fermentation through overexpression , 2011 .

[73]  A. Ehrmann,et al.  Dissection of glutathione conjugate turnover in yeast. , 2010, Phytochemistry.

[74]  István Pócsi,et al.  Glutathione, altruistic metabolite in fungi. , 2004, Advances in microbial physiology.

[75]  D. Dubourdieu,et al.  Contribution of Volatile Thiols to the Aromas of White Wines Made From Several Vitis vinifera Grape Varieties , 2000, American Journal of Enology and Viticulture.

[76]  P. Henschke Yeasts-metabolism of nitrogen compounds , 1993 .

[77]  D. Gigot,et al.  Pathways of glutathione degradation in the yeast Saccharomyces cerevisiae , 1985 .