The Role of Midlatitude Cyclones in the Emission, Transport, Production, and Removal of Aerosols in the Northern Hemisphere

We examine the distribution of aerosol optical depth (AOD) across 27,707 northern hemisphere (NH) midlatitude cyclones for 2005–2018 using retrievals from the Moderate Resolution Spectroradiometer (MODIS) sensor on the Aqua satellite. Cyclone‐centered composites show AOD enhancements of 20%–45% relative to background conditions in the warm conveyor belt (WCB) airstream. Fine mode AOD accounts for 68% of this enhancement annually. Relative to background conditions, coarse mode AOD is enhanced by more than a factor of two near the center of the composite cyclone, co‐located with high surface wind speeds. Within the WCB, MODIS AOD maximizes in spring, with a secondary maximum in summer. Cyclone‐centered composites of AOD from the Modern Era Retrospective analysis for Research and Applications, version 2 Global Modeling Initiative (M2GMI) simulation reproduce the magnitude and seasonality of the MODIS AOD composites and enhancements. M2GMI simulations show that the AOD enhancement in the WCB is dominated by sulfate (37%) and organic aerosol (25%), with dust and sea salt each accounting for 15%. MODIS and M2GMI AOD are 60% larger in North Pacific WCBs compared to North Atlantic WCBs and show a strong relationship with anthropogenic pollution. We infer that NH midlatitude cyclones account for 355 Tg yr−1 of sea salt aerosol emissions annually, or 60% of the 30–80°N total. We find that deposition within WCBs is responsible for up to 35% of the total aerosol deposition over the NH ocean basins. Furthermore, the cloudy environment of WCBs leads to efficient secondary sulfate production.

[1]  Y. Kondo,et al.  Contrasting source contributions of Arctic black carbon to atmospheric concentrations, deposition flux, and atmospheric and snow radiative effects , 2022, Atmospheric Chemistry and Physics.

[2]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[3]  R. Martin,et al.  Global high-resolution emissions of soil NOx, sea salt aerosols, and biogenic volatile organic compounds , 2020, Scientific Data.

[4]  P. Good,et al.  Historical and future changes in air pollutants from CMIP6 models , 2020, Atmospheric Chemistry and Physics.

[5]  B. Colle,et al.  The Future of Midlatitude Cyclones , 2019, Current Climate Change Reports.

[6]  R. Portmann,et al.  Anthropogenic aerosol drives uncertainty in future climate mitigation efforts , 2019, Scientific Reports.

[7]  C. Naud,et al.  Extratropical Cyclone Clouds in the GFDL Climate Model: Diagnosing Biases and the Associated Causes , 2019, Journal of Climate.

[8]  Lin Sun,et al.  Performance of MODIS Collection 6.1 Level 3 aerosol products in spatial-temporal variations over land , 2019, Atmospheric Environment.

[9]  Yiran Peng,et al.  MODIS Collection 6.1 aerosol optical depth products over land and ocean: validation and comparison , 2019, Atmospheric Environment.

[10]  L. Oman,et al.  Global changes in the diurnal cycle of surface ozone , 2019, Atmospheric Environment.

[11]  M. Chin,et al.  Observationally constrained analysis of sea salt aerosol in the marine atmosphere , 2018, Atmospheric Chemistry and Physics.

[12]  C. Naud,et al.  Extratropical Cyclone Precipitation Life Cycles: A Satellite‐Based Analysis , 2018, Geophysical Research Letters.

[13]  A. Schmidt,et al.  Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations , 2018 .

[14]  H. Matthews,et al.  Climate and health implications of future aerosol emission scenarios , 2018 .

[15]  R. Wood,et al.  Multiyear Composite View of Ozone Enhancements and Stratosphere‐to‐Troposphere Transport in Dry Intrusions of Northern Hemisphere Extratropical Cyclones , 2017, Journal of geophysical research. Atmospheres : JGR.

[16]  William M. Putman,et al.  Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model , 2017, Journal of advances in modeling earth systems.

[17]  A. Pozzer,et al.  Investigation of global particulate nitrate from the AeroCom phase III experiment , 2017 .

[18]  C. Naud,et al.  Observed Covariations of Aerosol Optical Depth and Cloud Cover in Extratropical Cyclones , 2017 .

[19]  L. Oman,et al.  Large‐Scale Atmospheric Transport in GEOS Replay Simulations , 2017 .

[20]  J. Lamarque,et al.  FUTURE GLOBAL MORTALITY FROM CHANGES IN AIR POLLUTION ATTRIBUTABLE TO CLIMATE CHANGE , 2017, Nature climate change.

[21]  C. Flynn,et al.  The MERRA-2 Aerosol Reanalysis, 1980 - onward, Part I: System Description and Data Assimilation Evaluation. , 2017, Journal of climate.

[22]  Bin Zhao,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[23]  U. Lohmann,et al.  Effect of anthropogenic aerosol emissions on precipitation in warm conveyor belts in the western North Pacific in winter – a model study with ECHAM6-HAM , 2016 .

[24]  C. Naud,et al.  Aerosol optical depth distribution in extratropical cyclones over the Northern Hemisphere oceans , 2016 .

[25]  Randal D. Koster,et al.  MERRA-2 Input Observations: Summary and Assessment , 2016 .

[26]  Helen F. Dacre,et al.  Can climate models represent the precipitation associated with extratropical cyclones? , 2016, Climate Dynamics.

[27]  V. S. Nair,et al.  Aerosol black carbon over Svalbard regions of Arctic , 2016 .

[28]  P. Colarco,et al.  The MERRA-2 Aerosol Reanalysis , 2015 .

[29]  S. Madronich,et al.  Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime , 2015 .

[30]  L. Horowitz,et al.  Radiative forcing and climate response to projected 21st century aerosol decreases , 2015 .

[31]  I. Rudeva,et al.  Global Relationship between Fronts and Warm Conveyor Belts and the Impact on Extreme Precipitation , 2015 .

[32]  S. Ghan,et al.  Aerosol transport and wet scavenging in deep convective clouds: A case study and model evaluation using a multiple passive tracer analysis approach , 2015 .

[33]  H. Liao,et al.  Decadal trend and interannual variation of outflow of aerosols from East Asia: Roles of variations in meteorological parameters and emissions , 2014 .

[34]  K. E. Knowland,et al.  The effects of springtime mid-latitude storms on trace gas composition determined from the MACC reanalysis , 2014 .

[35]  C. Frantzidis,et al.  Response to Reviewers Reviewer #1 , 2010 .

[36]  R. Seager,et al.  A Diagnosis of the Seasonally and Longitudinally Varying Midlatitude Circulation Response to Global Warming , 2014 .

[37]  C. Jakob,et al.  The relationship between clouds and dynamics in Southern Hemisphere extratropical cyclones in the real world and a climate model , 2014 .

[38]  David G. Streets,et al.  Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model , 2014 .

[39]  Yuan Wang,et al.  Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis , 2014, Nature Communications.

[40]  Heini Wernli,et al.  Warm Conveyor Belts in the ERA-Interim Dataset (1979–2010): Part I: Climatology and Potential Vorticity Evolution , 2014 .

[41]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[42]  P. Stier,et al.  The contribution of the strength and structure of extratropical cyclones to observed cloud–aerosol relationships , 2013 .

[43]  L. Horowitz,et al.  Impacts of 21st century climate change on global air pollution-related premature mortality , 2013, Climatic Change.

[44]  H. Grythe,et al.  A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements , 2013 .

[45]  M. Chin,et al.  Radiative forcing in the ACCMIP historical and future climate simulations , 2013 .

[46]  Steven J. Smith,et al.  Two hundred fifty years of aerosols and climate: the end of the age of aerosols , 2013 .

[47]  S. Ghan,et al.  Aerosol optical depth increase in partly cloudy conditions , 2012 .

[48]  L. Jaeglé,et al.  Composite study of aerosol export events from East Asia and North America , 2012 .

[49]  N. Krotkov,et al.  SO2 over central China: Measurements, numerical simulations and the tropospheric sulfur budget , 2012 .

[50]  M. Chin,et al.  Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations , 2012 .

[51]  Keywan Riahi,et al.  Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period , 2011 .

[52]  P. Stier,et al.  The effect of extratropical cyclones on satellite‐retrieved aerosol properties over ocean , 2011 .

[53]  Becky Alexander,et al.  Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations , 2010 .

[54]  M. Chin,et al.  Online simulations of global aerosol distributions in the NASA GEOS‐4 model and comparisons to satellite and ground‐based aerosol optical depth , 2010 .

[55]  B. Legras,et al.  Toward a novel high-resolution modeling approach for the study of chemical evolution of pollutant plumes during long-range transport , 2010 .

[56]  Kevin I. Hodges,et al.  Can Climate Models Capture the Structure of Extratropical Cyclones , 2010 .

[57]  B. Anderson,et al.  Online simulations of mineral dust aerosol distributions: Comparisons to NAMMA observations and sensitivity to dust emission parameterization , 2010 .

[58]  David G. Streets,et al.  Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements , 2009 .

[59]  Zhaoyan Liu,et al.  Trans-pacific dust transport: integrated analysis of NASA/CALIPSO and a global aerosol transport model , 2009 .

[60]  A. Stohl,et al.  Transport of north China air pollution by midlatitude cyclones: Case study of aircraft measurements in summer 2007 , 2009 .

[61]  Xiaojun Yuan,et al.  Satellite‐based midlatitude cyclone statistics over the Southern Ocean: 1. Scatterometer‐derived pressure fields and storm tracking , 2009 .

[62]  U. Ulbrich,et al.  Extra-tropical cyclones in the present and future climate: a review , 2009 .

[63]  Patrick Minnis,et al.  Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX , 2008 .

[64]  Louisa Emmons,et al.  Evolution of Asian aerosols during transpacific transport in INTEX-B , 2008 .

[65]  Yoram J. Kaufman,et al.  An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors , 2008 .

[66]  Lorraine A. Remer,et al.  A satellite‐based assessment of transpacific transport of pollution aerosol , 2008 .

[67]  S. Belcher,et al.  Boundary‐layer ventilation by baroclinic life cycles , 2008 .

[68]  K. Prather,et al.  Analysis of atmospheric aerosols. , 2008, Annual review of analytical chemistry.

[69]  Nathaniel J. Livesey,et al.  Model study of the cross-tropopause transport of biomass burning pollution , 2007 .

[70]  Bryan N. Duncan,et al.  Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model , 2007 .

[71]  Dong L. Wu,et al.  Intensification of Pacific storm track linked to Asian pollution , 2007, Proceedings of the National Academy of Sciences.

[72]  P. Field,et al.  Precipitation and Cloud Structure in Midlatitude Cyclones , 2007 .

[73]  C. Schwierz,et al.  Surface Cyclones in the ERA-40 Dataset (1958–2001). Part I: Novel Identification Method and Global Climatology , 2006 .

[74]  Yrjö Viisanen,et al.  Direct observational evidence linking atmospheric aerosol formation and cloud droplet activation , 2005 .

[75]  Tami C. Bond,et al.  Export efficiency of black carbon aerosol in continental outflow: Global implications , 2005 .

[76]  Nicola Spinelli,et al.  The vertical distribution of aerosol over Europe - synthesis of one year of EARLINET aerosol lidar measurements and aerosol transport modeling with LMDzT-INCA , 2005 .

[77]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[78]  D. Jaffe,et al.  Long‐range transport of Asian pollution to the northeast Pacific: Seasonal variations and transport pathways of carbon monoxide , 2004 .

[79]  O. Cooper,et al.  A case study of transpacific warm conveyor belt transport: Influence of merging airstreams on trace gas import to North America , 2004 .

[80]  J. D. de Gouw,et al.  Particle characteristics following cloud-modified transport from Asia to North America , 2004 .

[81]  S. Gong,et al.  A parameterization of sea‐salt aerosol source function for sub‐ and super‐micron particles , 2003 .

[82]  T. Jickells,et al.  Atmospheric deposition of nutrients to the Atlantic Ocean , 2003 .

[83]  Henry E. Fuelberg,et al.  Role of wave cyclones in transporting boundary layer air to the free troposphere during the spring 2001 NASA/TRACE‐P experiment , 2003 .

[84]  C. Timmreck,et al.  Monthly Averages of Aerosol Properties: A Global Comparison Among Models, Satellite Data, and AERONET Ground Data , 2003 .

[85]  Yoram J. Kaufman,et al.  Evaluation of the Moderate‐Resolution Imaging Spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE , 2003 .

[86]  B. Hoskins,et al.  New perspectives on the Northern Hemisphere winter storm tracks , 2002 .

[87]  Teruyuki Nakajima,et al.  Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements , 2002 .

[88]  D. Turner,et al.  The Biogeochemistry of Iron in Seawater , 2001 .

[89]  M. Chin,et al.  Sources and distributions of dust aerosols simulated with the GOCART model , 2001 .

[90]  A. Stohl A 1-year Lagrangian ``climatology'' of airstreams in the Northern Hemisphere troposphere and lowermost stratosphere , 2001 .

[91]  H. Hansson,et al.  Organic atmospheric aerosols: Review and state of the science , 2000 .

[92]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[93]  K. Browning The dry intrusion perspective of extra‐tropical cyclone development , 1997 .

[94]  P. Crutzen,et al.  Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry , 1997 .

[95]  William R. Cotton,et al.  Cloud venting — A review and some new global annual estimates , 1995 .

[96]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[97]  K. Browning,et al.  Structure of a frontal cyclone , 1994 .

[98]  Louis W. Uccellini,et al.  A model-based diagnostic study of the rapid development phase of the Presidents' Day cyclone , 1988 .

[99]  T. Graedel,et al.  Chemistry within aqueous atmospheric aerosols and raindrops , 1981 .

[100]  P. Hobbs,et al.  Mesoscale Rainbands in Extratropical Cyclones , 1976 .

[101]  Heini Wernli,et al.  A 15-Year Climatology of Warm Conveyor Belts , 2004 .

[102]  I. McKendry,et al.  Six 'new' episodes of trans-Pacific transport of air pollutants , 2003 .

[103]  T. Jickells,et al.  Atmospheric iron inputs to the oceans , 2001 .

[104]  Keith A. Browning,et al.  Organization of Clouds and Precipitation in Extratropical Cyclones , 1990 .

[105]  P. Hobbs,et al.  Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclones , 1980 .