Single protein pores containing molecular adapters at high temperatures.

[1]  A. Gambacorta,et al.  Polar lipids of thermophilic prokaryotic organisms: chemical and physical structure. , 1987, Annual review of biophysics and biophysical chemistry.

[2]  L. Rothschild,et al.  Life in extreme environments , 2001, Nature.

[3]  S. Chan,et al.  Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems. , 1979, Biochimica et biophysica acta.

[4]  H. Bayley,et al.  Kinetics of a three-step reaction observed at the single-molecule level. , 2003, Angewandte Chemie.

[5]  D. Branton,et al.  Rapid nanopore discrimination between single polynucleotide molecules. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  H. Bayley,et al.  Subunit composition of a bicomponent toxin: Staphylococcal leukocidin forms an octameric transmembrane pore , 2002, Protein science : a publication of the Protein Society.

[7]  Seong-Ho Shin,et al.  Single-molecule covalent chemistry with spatially separated reactants. , 2003, Angewandte Chemie.

[8]  Victor M.M. Lobo,et al.  Handbook of electrolyte solutions , 1989 .

[9]  H. Bayley,et al.  Functional engineered channels and pores (Review) , 2004, Molecular membrane biology.

[10]  D. Julius,et al.  A capsaicin-receptor homologue with a high threshold for noxious heat , 1999, Nature.

[11]  S. Howorka,et al.  Kinetics of duplex formation for individual DNA strands within a single protein nanopore , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Beiying Liu,et al.  Thermodynamics of heat activation of single capsaicin ion channels VR1. , 2003, Biophysical journal.

[13]  G. Menestrina,et al.  Pore formation by Staphylococcus aureus alpha-toxin in lipid bilayers , 1987, European Biophysics Journal.

[14]  E. Courcelle,et al.  The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins. , 1999, Structure.

[15]  M. El-Sayed,et al.  The Effect of Protein Conformation Change from αII to αI on the Bacteriorhodopsin Photocycle , 2000 .

[16]  Sean Conlan,et al.  Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter , 1999, Nature.

[17]  H. Bayley,et al.  Folding of a monomeric porin, OmpG, in detergent solution. , 2003, Biochemistry.

[18]  S. Howorka,et al.  Sequence-specific detection of individual DNA strands using engineered nanopores , 2001, Nature Biotechnology.

[19]  D. Branton,et al.  Characterization of nucleic acids by nanopore analysis. , 2002, Accounts of chemical research.

[20]  Y. Inoue,et al.  Complexation Thermodynamics of Cyclodextrins. , 1998, Chemical reviews.

[21]  Ovchinnikov Lp,et al.  [The protein RNA-binding factor of animal cell extracts. Formation of informosome-like particles by the RNA-binding protein of rat liver cells]. , 1972 .

[22]  P. Roepstorff,et al.  Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger. , 2001, Biochemistry.

[23]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[24]  B. Svensson,et al.  Thermodynamics of ligand binding to the starch-binding domain of glucoamylase from Aspergillus niger. , 1994, European journal of biochemistry.

[25]  Kenji Yokota,et al.  Crystal structure of Staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel , 1999, Nature Structural Biology.

[26]  H. Bayley,et al.  Prolonged Residence Time of a Noncovalent Molecular Adapter, β-Cyclodextrin, within the Lumen of Mutant α-Hemolysin Pores , 2001, The Journal of general physiology.

[27]  Seong-Ho Shin,et al.  Kinetics of a reversible covalent-bond-forming reaction observed at the single-molecule level. , 2002, Angewandte Chemie.

[28]  P. Owen,et al.  Multiple forms of staphylococcal alpha-toxin. , 1972, Journal of medical microbiology.

[29]  Edward Moczydlowski,et al.  Single-Channel Enzymology , 1986 .

[30]  A. Gliozzi,et al.  Monolayer black membranes from bipolar lipids of archaebacteria and their temperature-induced structural changes , 2005, The Journal of Membrane Biology.

[31]  Thomas J. Jentsch,et al.  Temperature Dependence of Fast and Slow Gating Relaxations of ClC-0 Chloride Channels , 1997, The Journal of general physiology.

[32]  H. Bayley,et al.  Biochemical and biophysical characterization of OmpG: A monomeric porin. , 2000, Biochemistry.

[33]  Oliver Beckstein,et al.  Liquid–vapor oscillations of water in hydrophobic nanopores , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  H. Bayley,et al.  The staphylococcal leukocidin bicomponent toxin forms large ionic channels. , 2001, Biochemistry.

[35]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[36]  O. Andersen Graphic representation of the results of kinetic analyses. , 1999, The Journal of general physiology.

[37]  H. Gutfreund,et al.  Kinetics for the life sciences , 1995 .