Templated scaffolds of cis- and trans-tetrahydrofuran γ-amino acids: γ-azido-β-hydroxy-tetrahydrofuran-2-carboxylates from pentono-δ-lactones

[1]  O. Ichihara,et al.  Synthesis of all diastereomeric methyl 2,5-anhydro-3-deoxy-hexonates: precursors to C-2-deoxynucleosides and THF-templated γ- and δ-amino acids , 2003 .

[2]  D. Seebach,et al.  On the Biodegradation of β‐Peptides , 2002 .

[3]  D. Seebach,et al.  Cellular Uptake Studies with β‐Peptides , 2002 .

[4]  B. Jaun,et al.  γ2‐, γ3‐, and γ2,3,4‐Amino Acids, Coupling to γ‐Hexapeptides: CD Spectra, NMR Solution and X‐ray Crystal Structures of γ‐Peptides , 2002 .

[5]  D. Hoyer,et al.  Linear, Peptidase-Resistantβ2/β3-Di- andα/β3-Tetrapeptide Derivatives with Nanomolar Affinities to a Human Somatostatin Receptor, Preliminary Communication , 2001 .

[6]  S. Gellman,et al.  Toward beta-peptide tertiary structure: self-association of an amphiphilic 14-helix in aqueous solution. , 2001, Organic letters.

[7]  S. Gellman,et al.  Parallel sheet secondary structure in gamma-peptides. , 2001, Journal of the American Chemical Society.

[8]  D. Seebach,et al.  Synthesis of cyclo-β-tripeptides and their biological in vitro evaluation as antiproliferatives against the growth of human cancer cell lines , 2001 .

[9]  W. DeGrado,et al.  beta-Peptides: from structure to function. , 2001, Chemical reviews.

[10]  D. Seebach,et al.  Design, Synthesis, NMR-Solution and X-Ray Crystal Structure ofN-Acyl-γ-dipeptide Amides That Form aβII′-Type Turn , 2001 .

[11]  D. Hoyer,et al.  Peptide folding induces high and selective affinity of a linear and small beta-peptide to the human somatostatin receptor 4. , 2001, Journal of medicinal chemistry.

[12]  T. Claridge,et al.  cis - and trans -3-Azido-oxetane-2-carboxylate scaffolds: hexamers of oxetane cis -β-amino acids , 2001 .

[13]  C. Toniolo,et al.  First Rigid Peptide Foldamers with an Alternating Cis−Trans Amide Sequence. An Oligomeric Building Block for the Construction of New Helices, Large-Ring Cyclic Correlates, and Nanotubes , 2001 .

[14]  D. Seebach,et al.  The Outstanding Biological Stability of β‐ and γ‐Peptides toward Proteolytic Enzymes: An In Vitro Investigation with Fifteen Peptidases , 2001 .

[15]  D. Seebach,et al.  Synthesis and CD Spectra in MeCN, MeOH, and H2O ofγ-Oligopeptides with Hydroxy Groups on the Backbone, Preliminary Communication , 2001 .

[16]  B. Jaun,et al.  Preparation and determination of X-ray-crystal and NMR-solution structures of γ2,3,4-peptides , 2001 .

[17]  S. Gellman,et al.  12-Helix Formation in Aqueous Solution with Short β-Peptides Containing Pyrrolidine-Based Residues , 2000 .

[18]  S. Gellman,et al.  Antibiotics: Non-haemolytic β-amino-acid oligomers , 2000, Nature.

[19]  D. Hoyer,et al.  The cyclo-β-tetrapeptide (β-HPhe-β-HThr-β-HLys-β-HTrp): synthesis, NMR structure in methanol solution, and affinity for human somatostatin receptors , 2000 .

[20]  H. Hauser,et al.  β‐Peptides as Inhibitors of Small‐Intestinal Cholesterol and Fat Absorption , 1999 .

[21]  S. Hanessian,et al.  Synthesis and folding preferences of γ-amino acid oligopeptides: stereochemical control in the formation of a reverse turn and a helix , 1999 .

[22]  D. Hoyer,et al.  Synthesis and Biological Evaluation of a Cyclo-β-tetrapeptide as a Somatostatin Analogue. , 1999, Angewandte Chemie.

[23]  R. Aplin,et al.  An octameric carbopeptoid; secondary structure in octameric and tetrameric 5-aminomethyl-tetrahydrofuran-2-carboxylates , 1999 .

[24]  S. Durell,et al.  Formation of Short, Stable Helices in Aqueous Solution by β-Amino Acid Hexamers , 1999 .

[25]  M. Moloney,et al.  Novel peptidomimetic structures: enantioselective synthesis of conformationally constrained lysine, ornithine and alanine analogues from pyroglutamic acid , 1999 .

[26]  S. Michnick,et al.  Design of Secondary Structures in Unnatural Peptides: Stable Helical γ-Tetra-, Hexa-, and Octapeptides and Consequences of α-Substitution , 1998 .

[27]  Samuel H. Gellman,et al.  Foldamers: A Manifesto , 1998 .

[28]  B. Jaun,et al.  γ‐Peptides Forming More Stable Secondary Structures than α‐Peptides: Synthesis and helical NMR‐solution structure of the γ‐hexapeptide analog of H‐(Val‐Ala‐Leu)2‐OH , 1998 .

[29]  M. Sansom,et al.  Secondary structure in oligomers of carbohydrate amino acids , 1998 .

[30]  N. Chandler,et al.  N-α-benzoyl-cis-4-amino-L-proline: A γ-turn mimetic , 1996 .

[31]  C. Bichard,et al.  Acid-catalysed transformation of α-trifluoromethanesulfonates of γ- and δ-lactones into 2,5-disubstituted homochiral tetrahydrofurans , 1993 .

[32]  F. Gasparini,et al.  Total, asymmetric synthesis of (1r-1-c-(6′-amino-7′h-purin-8′-yl)-1,4-anhydro-3-azido-2,3-dideoxy-d-erythro-pentitol. , 1992 .

[33]  C. Toniolo,et al.  Structural characterization of the .beta.-bend ribbon spiral: crystallographic analysis of two long (L-Pro-Aib)n sequential peptides , 1992 .

[34]  C. Bichard,et al.  The ring contraction of δ-lactones with leaving group α-substituents : a strategy for the synthesis of 2,5-disubstituted highly functionalised homochiral tetrahydrofurans , 1992 .

[35]  D. Osguthorpe,et al.  Design of a natural cis peptide bond motif to form type VI β-turn mimetic , 1992 .

[36]  Paul W Smith,et al.  Synthesis of (2R,3S,4R)-3,4-dihydroxyproline from D-ribonolactone; an approach to the synthesis of polyfunctionalised D-amino acids from sugar lactones. X-Ray molecular structures of 2-azido-3,4-O-(R)-benzylidene-2-deoxy-D-ribono-1,5-lactone, 2-azido-2-deoxy-D-ribono-1,4-lactone, and (2R,3S,3R)-3,4- , 1987 .

[37]  R. Allan,et al.  Synthesis of analogues of GABA. XII. cis- and trans-4-Aminotetrahydrofuran-2-carboxylic acid , 1984 .