Broadband Calculable Coaxial Resistors

This article describes a method to model the impedance of a Haddad-type resistor over a frequency interval ranging from 10 to 200 MHz, hereafter defined as low frequency–radio frequency (LF–RF) range. To this end, novel resistor standards, of <inline-formula> <tex-math notation="LaTeX">$1 \rm k \Omega $ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$100 \Omega $ </tex-math></inline-formula>, have been designed and manufactured with the aim of sharply identifying the nodes that define the impedance. Resistor modeling is divided into two main parts: the first one, describing the central coaxial core and the second part, describing the connectors through physical simulations and a subsequent analytical approach. The results show a remarkable good agreement between measured and modeled impedance over the whole considered frequency range. Uncertainty values allow for the traceability of the resistors up to high frequencies and for the calibration of commercial impedance analyzers within the LF–RF range.

[1]  F. Overney,et al.  Impedance Metrology: Bridging the LF-RF Gap , 2020, 2020 Conference on Precision Electromagnetic Measurements (CPEM).

[2]  Blaise Jeanneret,et al.  Impedance bridges: from Wheatstone to Josephson , 2018, Metrologia.

[3]  Y. Semenov,et al.  Multifilar Resistors from DC up to 30 MHz , 2018, 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018).

[4]  M. Sira,et al.  Bridging the LF-RF gap for Calibration of the RLC Meters , 2018, 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018).

[5]  Johannes Hoffmann,et al.  Contemporary evaluation of measurement uncertainties in vector network analysis , 2017 .

[6]  Sachin Kumar,et al.  Realization of Four-Terminal-Pair Capacitors as Reference Standards of Impedance at High Frequency Using Impedance-Matrix Method , 2017, IEEE Transactions on Instrumentation and Measurement.

[7]  J. Bohacek,et al.  Calculation of high frequency 4-TP impedance standards , 2016, 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016).

[8]  G. Rietveld,et al.  Traceable DC − 18 GHz characterization of coaxial 50 Ω impedance standards , 2016, 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016).

[9]  Yakup Gülmez,et al.  Uncertainty Analysis of Four-Terminal-Pair Capacitance Characterization up 30 MHz , 2013 .

[10]  Djamel Allal,et al.  Primary Standard for S-Parameter Measurements at Intermediate Frequencies (IFs) , 2013, IEEE Transactions on Instrumentation and Measurement.

[11]  D. Allal,et al.  Traçabilité des mesures d’impédance électrique entre 100 kHz et 10 MHz , 2013 .

[12]  Johannes Hoffmann,et al.  Metas.UncLib—a measurement uncertainty calculator for advanced problems , 2012 .

[13]  Luca Callegaro,et al.  The metrology of electrical impedance at high frequency: a review , 2009 .

[14]  Yu. P. Semenov,et al.  Resistors With Calculable Frequency Dependencies Up to 1 MHz , 2007, IEEE Transactions on Instrumentation and Measurement.

[15]  Giovanni Mana,et al.  A Universal Geometry for Calculable Frequency-Response Coefficient of LCR Standards and New 10-MHz Resistance and 1.6-MHz Quadrature-Bridge Systems , 2007, IEEE Transactions on Instrumentation and Measurement.

[16]  Shakil A. Awan,et al.  Towards accurate measurement of the frequency dependence of capacitance and resistance standards up to 10 MHz , 2004, IEEE Transactions on Instrumentation and Measurement.

[17]  Ivanil S. Bonatti,et al.  ABCD Matrix: A Unique Tool for Linear Two-Wire Transmission Line Modelling , 2003 .

[18]  Luca Callegaro,et al.  Four-terminal-pair impedances and scattering parameters , 2003 .

[19]  J Boh cek,et al.  EUROMET Project 432: Frequency performance of 12 906 ? and 6453 ? reference resistors for ac quantum Hall effect experiments , 2002 .

[20]  D. A. Frickey Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances , 1994 .

[21]  K. Suzuki,et al.  A new universal calibration method for four-terminal-pair admittance standards , 1990, Conference on Precision Electromagnetic Measurements.

[22]  L. M. Wedepohl,et al.  Transient analysis of underground power-transmission systems. System-model and wave-propagation characteristics , 1973 .

[23]  S. A. Schelkunoff,et al.  The electromagnetic theory of coaxial transmission lines and cylindrical shields , 1934 .

[24]  R. D. Cutkosky Four-terminal-pair networks as precision admittance and impedance standards , 1964, IEEE Transactions on Communication and Electronics.