Characterization of Individual Magnetic Nanoparticles in Solution by Double Nanohole Optical Tweezers.

We study individual superparamagnetic Fe3O4 (magnetite) nanoparticles in solution using a double nanohole optical tweezer with magnetic force setup. By analysis of the trapping optical transmission signal (step size, autocorrelation, the root-mean-square signal, and the distribution with applied magnetic field), we are able to measure the refractive index, magnetic susceptibility, remanence and size of each trapped nanoparticle. The size distribution is found to agree well with scanning electron microscopy measurements, and the permeability, magnetic susceptibility and remanence values are all in agreement with published results. Our approach demonstrates the versatility of the optical tweezer with magnetic field setup to characterize nanoparticles in fluidic mixtures with potential for isolation of desired particles and pick-and-place functionality.

[1]  P. Wachter,et al.  Optical properties of magnetite (Fe3O4) , 1979 .

[2]  Abhay Kotnala,et al.  Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer. , 2014, Nano letters.

[3]  Romain Quidant,et al.  Self -induced back-action optical trapping of dielectric nanoparticles , 2009 .

[4]  Yael Roichman,et al.  Manipulation and assembly of nanowires with holographic optical traps. , 2005, Optics express.

[5]  Metin Sitti,et al.  Dynamic trapping and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot. , 2014, Lab on a chip.

[6]  E. Stelzer,et al.  Optical trapping of dielectric particles in arbitrary fields. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  Amr A E Saleh,et al.  Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures. , 2012, Nano letters.

[8]  P. G. Gucciardi,et al.  Femtonewton force sensing with optically trapped nanotubes. , 2008, Nano letters.

[9]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[10]  S. Smith,et al.  Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. , 1992, Science.

[11]  Romuald Houdré,et al.  Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals. , 2013, Lab on a chip.

[12]  Thomas Aabo,et al.  Efficient optical trapping and visualization of silver nanoparticles. , 2008, Nano letters.

[13]  Abhay Kotnala,et al.  Sensing nanoparticles using a double nanohole optical trap. , 2013, Lab on a chip.

[14]  Sylvain Gigan,et al.  Speckle optical tweezers: micromanipulation with random light fields. , 2014, Optics express.

[15]  Integrating a high-force optical trap with gold nanoposts and a robust gold-DNA bond. , 2009, Nano letters.

[16]  A. Helmicki,et al.  An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. , 2002, Lab on a chip.

[17]  Jing Sun,et al.  Synthesis and characterization of biocompatible Fe3O4 nanoparticles. , 2007, Journal of biomedical materials research. Part A.

[18]  Yi Li,et al.  Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity. , 2012, Nano letters.

[19]  T. Čižmár,et al.  Bidirectional optical sorting of gold nanoparticles. , 2012, Nano letters.

[20]  R. Gelfand,et al.  Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution , 2014, Nature Photonics.

[21]  Julian Evans,et al.  Optical manipulation of self-aligned graphene flakes in liquid crystals. , 2013, Optics express.

[22]  Peter J. Pauzauskie,et al.  Optical trapping and integration of semiconductor nanowire assemblies in water , 2006, Nature materials.

[23]  Fan Wang,et al.  Characterization of semiconductor nanowires using optical tweezers. , 2011, Nano letters.

[24]  Hakho Lee,et al.  Manipulation of biological cells using a microelectromagnet matrix , 2004 .

[25]  Robert H. Austin,et al.  Continuous microfluidic immunomagnetic cell separation , 2004 .

[26]  D. Erickson,et al.  Forces and transport velocities for a particle in a slot waveguide. , 2009, Nano letters.

[27]  R. Gelfand,et al.  Label-free free-solution nanoaperture optical tweezers for single molecule protein studies. , 2015, The Analyst.

[28]  George M Whitesides,et al.  The force acting on a superparamagnetic bead due to an applied magnetic field. , 2007, Lab on a chip.

[29]  D. Ingber,et al.  Mechanotransduction across the cell surface and through the cytoskeleton , 1993 .

[30]  Matthew J Lang,et al.  Combining single-molecule manipulation and single-molecule detection. , 2014, Current opinion in structural biology.

[31]  F S Pavone,et al.  Three-dimensional magneto-optic trap for micro-object manipulation. , 2001, Optics letters.

[32]  K. Crozier,et al.  Planar silicon microrings as wavelength-multiplexed optical traps for storing and sensing particles. , 2011, Lab on a chip.

[33]  David Erickson,et al.  Nanomanipulation using near field photonics. , 2011, Lab on a chip.

[34]  Olaf Schubert,et al.  Quantitative optical trapping of single gold nanorods. , 2008, Nano letters.

[35]  R. Quidant,et al.  Three-dimensional manipulation with scanning near-field optical nanotweezers. , 2014, Nature nanotechnology.

[36]  K. Yao,et al.  Synthesis and Magnetic Properties of Fe3O4 Nanoparticles , 2002 .

[37]  X. Zeng,et al.  Preparation and coercivity and saturation magnetization dependence of inductive heating property of Fe3O4 nanoparticles in an alternating current magnetic field for localized hyperthermia , 2009 .

[38]  Donald E Ingber,et al.  Combined microfluidic-micromagnetic separation of living cells in continuous flow , 2006, Biomedical microdevices.

[39]  Nicole Pamme,et al.  Magnetism and microfluidics. , 2006, Lab on a chip.

[40]  Philippe Guyot-Sionnest,et al.  Optical trapping and alignment of single gold nanorods by using plasmon resonances. , 2006 .

[41]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[42]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[43]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[44]  Reuven Gordon,et al.  Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. , 2011, Nano letters.

[45]  Chris H Wiggins,et al.  Fast dynamics of supercoiled DNA revealed by single-molecule experiments , 2007, Proceedings of the National Academy of Sciences.

[46]  Jacob W J Kerssemakers,et al.  Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments , 2010, Nature Methods.

[47]  Reuven Gordon,et al.  Optical trapping of a single protein. , 2012, Nano letters.

[48]  Yasuyuki Tsuboi,et al.  Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping. , 2014, The journal of physical chemistry letters.

[49]  Mikael Käll,et al.  Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. , 2010, Nano letters.