Compactly Accessible Categories and Quantum Key Distribution

Compact categories have lately seen renewed interest via applications to quantum physics. Being essentially finite-dimensional, they cannot accomodate (co)limit-based constructions. For example, they cannot capture protocols such as quantum key distribution, that rely on the law of large numbers. To overcome this limitation, we introduce the notion of a compactly accessible category, relying on the extra structure of a factorisation system. This notion allows for infinite dimension while retaining key properties of compact categories: the main technical result is that the choice-of-duals functor on the compact part extends canonically to the whole compactly accessible category. As an example, we model a quantum key distribution protocol and prove its correctness categorically.

[1]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[2]  Saunders MacLane,et al.  Duality for groups , 1950 .

[3]  Michael Müger Abstract duality for symmetric tensor *-categories , 2007 .

[4]  Bob Coecke,et al.  Interacting Quantum Observables , 2008, ICALP.

[5]  Stefan Milius On Colimits in Categories of Relations , 2003, Appl. Categorical Struct..

[6]  P. Gabriel,et al.  Lokal α-präsentierbare Kategorien , 1971 .

[7]  Michael Barr,et al.  Accessible categories and models of linear logic , 1991 .

[8]  G. M. Kelly,et al.  Categories of continuous functors, I , 1972 .

[9]  P. Panangaden,et al.  Nuclear and trace ideals in tensored-categories , 1998, math/9805102.

[10]  Giuseppe Rosolini,et al.  Proceedings of the 7th International Conference on Category Theory and Computer Science , 1997 .

[11]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[12]  Ross Duncan,et al.  Types for quantum computing , 2006 .

[13]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[14]  Frank W. Anderson,et al.  Rings and Categories of Modules , 1974 .

[15]  John E. Roberts,et al.  A new duality theory for compact groups , 1989 .

[16]  This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivs 3.0 Licence. To view a copy of the licence please see: http://creativecommons.0rg/licenses/by-nc-nd/3.0/ INEQIMTES IN THE DELIVERY OF SERVICES TO A FEMALE FARM CLIENTELE: SOME~~ , 2010 .

[17]  Jamie Vicary,et al.  A Categorical Framework for the Quantum Harmonic Oscillator , 2007, 0706.0711.

[18]  Mehrnoosh Sadrzadeh,et al.  High Level Quantum Structures in Linguistics and Multi Agent Systems , 2007, AAAI Spring Symposium: Quantum Interaction.

[19]  Samson Abramsky,et al.  Abstract Scalars, Loops, and Free Traced and Strongly Compact Closed Categories , 2005, CALCO.

[20]  Andre Scedrov,et al.  Categories, allegories , 1990, North-Holland mathematical library.

[21]  S. Lane Mathematics, Form and Function , 1985 .

[22]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .

[23]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[24]  J. R. Isbell,et al.  Some Remarks Concerning Categories and Subspaces , 1957, Canadian Journal of Mathematics.

[25]  Stefano Kasangian,et al.  Bicategories of spans and relations , 1984 .

[26]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[27]  Ana Sokolova,et al.  Generic Trace Theory , 2006, CMCS.

[28]  Harald Lindner Adjunctions in monoidal categories , 1978 .

[29]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[30]  R. A. G. Seely,et al.  Linear Logic, -Autonomous Categories and Cofree Coalgebras , 1989 .

[31]  Prakash Panangaden,et al.  Conformal Field Theory as a Nuclear Functor , 2007, Computation, Meaning, and Logic.

[32]  Prakash Panangaden,et al.  Holomorhpic Models of Exponential Types in Linear Logic , 1993, MFPS.

[33]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[34]  Brian Day,et al.  Note on compact closed categories , 1977, Journal of the Australian Mathematical Society.

[35]  N. Jacobson Lectures In Abstract Algebra , 1951 .

[36]  Dusko Pavlovic,et al.  Quantum measurements without sums , 2007 .

[37]  F. Smithies A HILBERT SPACE PROBLEM BOOK , 1968 .

[38]  S. Lane Categories for the Working Mathematician , 1971 .

[39]  Joachim Kock,et al.  Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .

[40]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.