On the Achievable Communication Rates of Generalized Soliton Transmission Systems

We analyze the achievable communication rates of a generalized soliton-based transmission system for the optical fiber channel. This method is based on modulation of parameters of the scattering domain, via the inverse scattering transform, by the information bits. The decoder uses the direct spectral transform to estimate these parameters and decode the information message. Unlike ordinary On-Off Keying (OOK) soliton systems, the solitons' amplitude may take values in a continuous interval. A considerable rate gain is shown in the case where the waveforms are 2-bound soliton states. Using traditional information theory and inverse scattering perturbation theory, we analyze the influence of the amplitude fluctuations as well as soliton arrival time jitter, on the achievable rates. Using this approach we show that the time of arrival jitter (Gordon-Haus) limits the information rate in a continuous manner, as opposed to a strict threshold in OOK systems.

[1]  Suguru Arimoto,et al.  An algorithm for computing the capacity of arbitrary discrete memoryless channels , 1972, IEEE Trans. Inf. Theory.

[2]  Frank R. Kschischang,et al.  Information Transmission Using the Nonlinear Fourier Transform, Part II: Numerical Methods , 2012, IEEE Transactions on Information Theory.

[3]  Yuri S. Kivshar,et al.  Dynamics of Solitons in Nearly Integrable Systems , 1989 .

[4]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[5]  Mansoor I. Yousefi Information Transmission using the Nonlinear Fourier Transform , 2013 .

[6]  Shlomo Shamai,et al.  The capacity of average and peak-power-limited quadrature Gaussian channels , 1995, IEEE Trans. Inf. Theory.

[7]  Richard E. Blahut,et al.  Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.

[8]  Hermann A. Haus,et al.  Solitons in optical communications , 1996 .

[9]  D. Kaup A Perturbation Expansion for the Zakharov–Shabat Inverse Scattering Transform , 1976 .

[10]  A. Hasegawa,et al.  Eigenvalue communication , 1993 .

[11]  Frank R. Kschischang,et al.  Information Transmission Using the Nonlinear Fourier Transform, Part I: Mathematical Tools , 2012, IEEE Transactions on Information Theory.

[12]  Yuji Kodama,et al.  Solitons in optical communications , 1995 .

[13]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[14]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[15]  H. Haus,et al.  Random walk of coherently amplified solitons in optical fiber transmission. , 1986, Optics letters.