Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

[1]  T. Okada,et al.  Organic vapor sensitivity in a porous silicon device , 1996 .

[2]  J. Kuffel,et al.  High Voltage Engineering: Fundamentals , 1984 .

[3]  Craig A Grimes,et al.  Metal oxide nanoarchitectures for environmental sensing. , 2003, Journal of nanoscience and nanotechnology.

[4]  Niraj Sinha,et al.  Carbon nanotube-based sensors. , 2006, Journal of nanoscience and nanotechnology.

[5]  Antonio Ficarella,et al.  Automotive application of sol–gel TiO2 thin film-based sensor for lambda measurement , 2003 .

[6]  Nataliya V. Roznyatovskaya,et al.  Conducting polymers in chemical sensors and arrays. , 2008, Analytica chimica acta.

[7]  H. B. Lu,et al.  A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability , 2008, Nanotechnology.

[8]  John S. Townsend,et al.  The Theory of Ionization of Gases by Collision , 2007 .

[9]  Field emission model of carbon nanotubes to simulate gas breakdown in ionization gas sensor , 2013 .

[10]  Bingqing Wei,et al.  Miniaturized gas ionization sensors using carbon nanotubes , 2003, Nature.

[11]  B. Cai,et al.  A MEMS-Based Ionization Gas Sensor Using Carbon Nanotubes , 2007, IEEE Transactions on Electron Devices.

[12]  D. K. Davies,et al.  Vacuum Electrical Breakdown between Plane-Parallel Copper Electrodes , 1966 .

[13]  M. Kahrizi,et al.  A Novel Gas Sensor Based on Tunneling-Field-Ionization on Whisker-Covered Gold Nanowires , 2008, IEEE Sensors Journal.

[14]  B. Cai,et al.  MEMS-based microelectrode system incorporating carbon nanotubes for ionization gas sensing , 2007 .

[15]  Seongjeen Kim,et al.  CNT Sensors for Detecting Gases with Low Adsorption Energy by Ionization , 2006, Sensors (Basel, Switzerland).

[16]  D. C. Frost,et al.  Ionization potentials of ammonia , 1967 .

[17]  M. A. Ali,et al.  Electron-impact ionization cross sections of atmospheric molecules , 1997 .

[18]  G. Bryant,et al.  Electrical breakdown in the microscale: Testing the standard theory , 2006 .

[19]  Cheol Jin Lee,et al.  Organic vapour sensing by current response of porous silicon layer , 2001 .

[20]  Makoto Egashira,et al.  Basic Aspects and Challenges of Semiconductor Gas Sensors , 1999 .

[21]  Mojtaba Kahrizi,et al.  A novel miniature gas ionization sensor based on freestanding gold nanowires , 2007 .