Error-correcting codes in projective space

The projective space of order <i>n</i> over the finite field \BBF<i>q</i>, denoted here as <i>Pq</i>(<i>n</i>), is the set of all subspaces of the vector space \BBF<i>qn</i> . The projective space can be endowed with the distance function <i>d</i>(<i>U</i>, <i>V</i>) = dim<i>U</i> + dim<i>V</i> -2 dim(<i>U</i> ∩ <i>V</i>) which turns <i>Pq</i>(<i>n</i>) into a metric space. With this, an (<i>n</i>,<i>M</i>,<i>d</i>) code \BBC in projective space is a subset of <i>Pq</i>(<i>n</i>) of size <i>M</i> such that the distance between any two codewords (subspaces) is at least <i>d</i> . Koetter and Kschischang recently showed that codes in projective space are precisely what is needed for error-correction in networks: an (<i>n</i>,<i>M</i>,<i>d</i>) code can correct <i>t</i> packet errors and ρ packet erasures introduced (adversarially) anywhere in the network as long as 2<i>t</i> + 2ρ <; <i>d</i>. This motivates our interest in such codes. In this paper, we investigate certain basic aspects of “coding theory in projective space.” First, we present several new bounds on the size of codes in <i>Pq</i>(<i>n</i>), which may be thought of as counterparts of the classical bounds in coding theory due to Johnson, Delsarte, and Gilbert-Varshamov. Some of these are stronger than all the previously known bounds, at least for certain code parameters. We also present several specific constructions of codes and code families in <i>Pq</i>(<i>n</i>). Finally, we prove that nontrivial perfect codes in <i>Pq</i>(<i>n</i>) do not exist.

[1]  B. Sundar Rajan,et al.  Convolutional Codes for Network-Error Correction , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[2]  Simon Thomas,et al.  Designs over finite fields , 1987 .

[3]  Ludo M. G. M. Tolhuizen,et al.  The generalized Gilbert-Varshamov bound is implied by Turan's theorem [code construction] , 1997, IEEE Trans. Inf. Theory.

[4]  Tor Bu Partitions of a vector space , 1980, Discret. Math..

[5]  Alexander Vardy,et al.  Linearity and Complements in Projective Space , 2011, ArXiv.

[6]  Frank R. Kschischang,et al.  Security for wiretap networks via rank-metric codes , 2007, 2008 IEEE International Symposium on Information Theory.

[7]  Farshad Lahouti,et al.  Block network error control codes and syndrome-based maximum likelihood decoding , 2008, 2008 IEEE International Symposium on Information Theory.

[8]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.

[9]  Papa A. Sissokho,et al.  Partitions of finite vector spaces into subspaces , 2008 .

[10]  William J. Martin,et al.  Anticodes for the Grassman and bilinear forms graphs , 1995, Des. Codes Cryptogr..

[11]  Shu-Tao Xia,et al.  Johnson type bounds on constant dimension codes , 2007, Des. Codes Cryptogr..

[12]  Sascha Kurz,et al.  Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance , 2008, MMICS.

[13]  Alexander Vardy,et al.  Error-Correcting Codes in Projective Space , 2011, IEEE Trans. Inf. Theory.

[14]  Suhas N. Diggavi,et al.  Noncoherent multisource network coding , 2008, 2008 IEEE International Symposium on Information Theory.

[15]  P. Delsarte AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .

[16]  Nicolas Sendrier,et al.  On the Dimension of the Hull , 1997, SIAM J. Discret. Math..

[17]  D. West Introduction to Graph Theory , 1995 .

[18]  Simon Thomas,et al.  Designs and partial geometries over finite fields , 1996 .

[19]  Maximilien Gadouleau,et al.  Packing and Covering Properties of Subspace Codes for Error Control in Random Linear Network Coding , 2008, IEEE Transactions on Information Theory.

[20]  Peter Frankl,et al.  The Erdös-Ko-Rado theorem for vector spaces , 1986, J. Comb. Theory, Ser. A.

[21]  Joachim Rosenthal,et al.  Spread codes and spread decoding in network coding , 2008, 2008 IEEE International Symposium on Information Theory.

[22]  Martin Bossert,et al.  Codes for network coding , 2008, 2008 IEEE International Symposium on Information Theory.

[23]  Reihaneh Safavi-Naini,et al.  Linear authentication codes: bounds and constructions , 2001, IEEE Trans. Inf. Theory.

[24]  Rudolf Ahlswede,et al.  On Perfect Codes and Related Concepts , 2001, Des. Codes Cryptogr..

[25]  L. Tolhuizen,et al.  The Generalized Gilbert-Varshamov Bound is Implied by TurTheorem , 1997 .

[26]  Alexander Vardy,et al.  On q-analogs of Steiner systems and covering designs , 2009, Adv. Math. Commun..

[27]  Tuvi Etzion Perfect Byte-Correcting Codes , 1998, IEEE Trans. Inf. Theory.

[28]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[29]  Moshe Schwartz,et al.  Codes and Anticodes in the Grassman Graph , 2002, J. Comb. Theory, Ser. A.

[30]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[31]  Andrea Montanari,et al.  Iterative Coding for Network Coding , 2013, IEEE Transactions on Information Theory.

[32]  Maximilien Gadouleau,et al.  Constant-rank codes , 2008, 2008 IEEE International Symposium on Information Theory.

[33]  Frank R. Kschischang,et al.  A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[34]  Laura M. Chihara On the zeros of the Askey-Wilson polynomials, with applications to coding theory , 1987 .

[35]  Maximilien Gadouleau,et al.  Constant-Rank Codes and Their Connection to Constant-Dimension Codes , 2008, IEEE Transactions on Information Theory.

[36]  Alexander Vardy,et al.  Maximum-Likelihood Soft Decision Decoding of Bch Codes , 1993, Proceedings. IEEE International Symposium on Information Theory.

[37]  Christine Bachoc,et al.  Semidefinite programming, harmonic analysis and coding theory , 2009, ArXiv.