Numerical simulation of multiple interacting wind turbines on a complex terrain

Abstract Modern wind farms are subjected to significant aerodynamic interference due to unsteady wakes of individual turbines as well as the complex terrains on which they are erected. The present study uses a new mixed basis formulation of the Navier–Stokes equations to numerically simulate turbines on a complex terrain. The turbines are modeled using a distribution of momentum sources. A finite-volume procedure (SIMPLER algorithm) is used to solve the incompressible Reynolds Averaged Navier–Stokes equations on body-fitted grids to obtain the flow-field. Three different turbulence models, the standard, RNG, and realizable K − ϵ are implemented and compared. Results validating the ability of the numerical procedure to simulate flows over complex terrains and interacting wind turbines are presented. Applications providing insights into the performance and loading on wind turbines on complex terrains are studied. The evolution and interaction of the turbine wakes over the complex terrain are also analyzed.

[1]  Stefan Ivanell,et al.  Numerical computations of wind turbine wakes , 2007 .

[2]  Laith A. J. Zori,et al.  NavierStokes Calculations of RotorAirframe Interaction in Forward Flight , 1995 .

[3]  C. Masson,et al.  An extended k–ε model for turbulent flow through horizontal-axis wind turbines , 2008 .

[4]  R. Rajagopalan,et al.  Finite difference model for vertical axis wind turbines , 1985 .

[5]  H. Q. Yang,et al.  A control volume finite difference method for buoyant flow in three-dimensional curvilinear non-orthogonal co-ordinates , 1990 .

[6]  W. Jones,et al.  The prediction of laminarization with a two-equation model of turbulence , 1972 .

[7]  P. K. Chaviaropoulos,et al.  Evaluation of the effects of turbulence model enhancements on wind turbine wake predictions , 2011 .

[8]  John Chick,et al.  CFD Modelling of the wake interactions of two wind turbines on a Gaussian hill , 2009 .

[9]  John Chick,et al.  Validation of a CFD model of wind turbine wakes with terrain effects , 2013 .

[10]  Davide Astolfi,et al.  Numerical modelling for wind farm operational assessment in complex terrain , 2015 .

[11]  J. Sørensen,et al.  Unsteady actuator disc model for horizontal axis wind turbines , 1992 .

[12]  M. Kato The modeling of turbulent flow around stationary and vibrating square cylinders , 1993 .

[13]  T. Shih,et al.  A new k-ϵ eddy viscosity model for high reynolds number turbulent flows , 1995 .

[14]  I. Demirdzic,et al.  A calculation procedure for turbulent flow in complex geometries , 1987 .

[15]  H. I. Andersson,et al.  Non-Linear, Microscale Modelling of the Flow Over Askervein Hill , 2006 .

[16]  Davide Astolfi,et al.  Numerical and Experimental Methods for Wake Flow Analysis in Complex Terrain , 2015 .

[17]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[18]  Hyungki Shin,et al.  A study of the wake effects on the wind characteristics and fatigue loads for the turbines in a wind farm , 2015 .

[19]  David L. Rhode,et al.  New. Strongly Conservative Finite-Volume Formulation for Fluid Flows in Irregular Geometries Using Contravariant Velocity Components: Part 1. Theory , 1994 .

[20]  Fernando Porté-Agel,et al.  Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms , 2011 .

[21]  J. C. Barnard,et al.  Observations of wind turbine wakes and surface roughness effects on wind flow variability , 1990 .

[22]  Javier García,et al.  Comparative study of the behavior of wind-turbines in a wind farm , 2007 .

[23]  Wayne Johnson,et al.  NUMERICAL PREDICTIONS OF WIND TURBINE POWER AND AERODYNAMIC LOADS FOR THE NREL PHASE II COMBINED EXPERIMENT ROTOR , 1999 .

[24]  Fue-Sang Lien,et al.  A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, Part 1: Computational implementation , 1994 .

[25]  Peter A. Taylor,et al.  Boundary-layer flow over topography : Impacts of the Askervein study , 1996 .

[26]  Bent Pedersen,et al.  Description of the two Danish 630 kw wind turbines, NIBE-A and NIBE-B, and some preliminary test results , 1980 .

[27]  Jens Nørkær Sørensen,et al.  Tip Loss Correction for Actuator/Navier–Stokes Computations , 2005 .

[28]  A. Crespo,et al.  Comparison of turbulence models for the computational fluid dynamics simulation of wind turbine wakes in the atmospheric boundary layer , 2011 .

[29]  R. Barthelmie,et al.  Simulation of wind farms in flat and complex terrain using CFD , 2010 .

[30]  Sanjay R. Mathur,et al.  Three dimensional analysis of a rotor in forward flight , 1993 .

[31]  Jason Jonkman,et al.  Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine , 2007 .

[32]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[33]  Kjersti Røkenes,et al.  Investigation of terrain effects with respect to wind farm siting , 2009 .

[34]  J. Michelsen,et al.  Aerodynamic predictions for the Unsteady Aerodynamics Experiment Phase-II rotor at the National Renewable Energy Laboratory , 2000 .

[35]  Jean-Christophe Golaz,et al.  One-Way Nested Large-Eddy Simulation over the Askervein Hill , 2009 .

[36]  F. Chow,et al.  Evaluation of Turbulence Closure Models for Large-Eddy Simulation over Complex Terrain: Flow over Askervein Hill , 2009 .

[37]  Wei Shyy,et al.  Numerical Recirculating Flow Calculation Using a Body-Fitted Coordinate System , 1985 .

[38]  Avinaash Murali,et al.  A new mixed basis Navier-Stokes formulation for incompressible flows over complex geometries , 2016, J. Comput. Phys..

[39]  Avinaash Murali,et al.  A new mixed basis Navier-Stokes formulation for simulating wind turbines on complex terrain , 2016 .

[40]  Maurício Felga Gobbi,et al.  Simulation of wind over a relatively complex topography: application to the Askervein Hill , 2012 .

[41]  Reza S. Abhari,et al.  Drone-Based Experimental Investigation of Three-Dimensional Flow Structure of a Multi-Megawatt Wind Turbine in Complex Terrain , 2015 .

[42]  V. C. Patel,et al.  Test Of Turbulence Models For Wind Flow Over Terrain With Separation And Recirculation , 2000 .

[43]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[44]  N. Troldborg,et al.  An improved k‐ ϵ model applied to a wind turbine wake in atmospheric turbulence , 2015 .

[45]  J. Palma,et al.  Simulation of the Askervein Flow. Part 1: Reynolds Averaged Navier–Stokes Equations (k∈ Turbulence Model) , 2003 .

[46]  Stel Nathan Walker,et al.  Wake measurements behind a large horizontal axis wind turbine generator , 1984 .

[47]  Suhas V. Patankar,et al.  CALCULATION PROCEDURE FOR VISCOUS INCOMPRESSIBLE FLOWS IN COMPLEX GEOMETRIES , 1988 .

[48]  R. Ganesh Rajagopalan,et al.  Laminar Flow Analysis of a Rotor in Hover , 1991 .

[49]  Harwell,et al.  Wake measurements on the Nibe wind turbines in Denmark , 1990 .

[50]  Bharat K. Soni,et al.  Governing equations of fluid mechanics in physical curvilinear coordinate system. , 1997 .

[51]  Fernando Porté-Agel,et al.  A Numerical Study of the Effects of Wind Direction on Turbine Wakes and Power Losses in a Large Wind Farm , 2013 .

[52]  D. N. Assanis,et al.  Prediction of Three-Dimensional Steady Incompressible Flows Using Body-Fitted Coordinates , 1993 .

[53]  G. D. Raithby,et al.  The Askervein hill project: A finite control volume prediction of three-dimensional flows over the hill , 1987 .

[54]  S. Orszag,et al.  Development of turbulence models for shear flows by a double expansion technique , 1992 .

[55]  Michael R. Ruith Unstructured, Multiplex Rotor Source Model With Thrust And Moment Trimming - Fluent's VBM Model , 2005 .

[56]  Pierre-Elouan Réthoré,et al.  Wind Turbine Wake in Atmospheric Turbulence , 2009 .

[57]  Paul Stangroom,et al.  CFD modelling of wind flow over terrain , 2004 .