Localization of putative carbonic anhydrases in the marine diatom, Thalassiosira pseudonana

[1]  Chen Shen,et al.  Quantification of Extracellular Carbonic Anhydrase Activity in Two Marine Diatoms and Investigation of Its Role1[W][OA] , 2013, Plant Physiology.

[2]  J. A. Smith,et al.  Cloning, Expression and Characterization of the δ‐carbonic Anhydrase of Thalassiosira weissflogii (Bacillariophyceae) , 2013, Journal of phycology.

[3]  A. Tanaka,et al.  SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater , 2013, Proceedings of the National Academy of Sciences.

[4]  I. Ladunga,et al.  Activation of the Carbon Concentrating Mechanism by CO2 Deprivation Coincides with Massive Transcriptional Restructuring in Chlamydomonas reinhardtii[W][OA] , 2012, Plant Cell.

[5]  M. Pellegrini,et al.  Transcriptome-Wide Changes in Chlamydomonas reinhardtii Gene Expression Regulated by Carbon Dioxide and the CO2-Concentrating Mechanism Regulator CIA5/CCM1[W][OA] , 2012, Plant Cell.

[6]  P. Kroth,et al.  Redox Regulation of Carbonic Anhydrases via Thioredoxin in Chloroplast of the Marine Diatom Phaeodactylum tricornutum* , 2012, The Journal of Biological Chemistry.

[7]  Michael S. Behnke,et al.  A Systematic Screen to Discover and Analyze Apicoplast Proteins Identifies a Conserved and Essential Protein Import Factor , 2011, PLoS pathogens.

[8]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[9]  M. Spalding,et al.  Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture , 2011, Photosynthesis Research.

[10]  F. Morel,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:Efficiency of the CO2-concentrating mechanism of diatoms , 2011 .

[11]  J. Moroney,et al.  The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles , 2011, Photosynthesis Research.

[12]  C. Bowler,et al.  Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana , 2011, Photosynthesis Research.

[13]  Kensuke Nakajima,et al.  Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration , 2011, Photosynthesis Research.

[14]  Hideya Fukuzawa,et al.  Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. , 2010, Plant & cell physiology.

[15]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[16]  H. Braun,et al.  Internal Architecture of Mitochondrial Complex I from Arabidopsis thaliana , 2010, Plant Cell.

[17]  Stephane E. Castel,et al.  Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM , 2010, Proceedings of the National Academy of Sciences.

[18]  A. Haouz,et al.  Recombinant plant gamma carbonic anhydrase homotrimers bind inorganic carbon , 2009, FEBS letters.

[19]  U. Maier,et al.  ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. , 2009, Molecular biology and evolution.

[20]  E. Virginia Armbrust,et al.  The life of diatoms in the world's oceans , 2009, Nature.

[21]  Y. Matsuda,et al.  Formation of macromolecular complexes of carbonic anhydrases in the chloroplast of a marine diatom by the action of the C-terminal helix. , 2009, The Biochemical journal.

[22]  J. Moroney,et al.  Identification and characterization of two closely related beta-carbonic anhydrases from Chlamydomonas reinhardtii. , 2008, Physiologia plantarum.

[23]  F. Morel,et al.  Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey. , 2008, Physiologia plantarum.

[24]  F. Morel,et al.  Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms , 2008, Nature.

[25]  A. Kaplan,et al.  A Model for Carbohydrate Metabolism in the Diatom Phaeodactylum tricornutum Deduced from Comparative Whole Genome Analysis , 2008, PloS one.

[26]  F. Morel,et al.  Expression and Inhibition of the Carboxylating and Decarboxylating Enzymes in the Photosynthetic C4 Pathway of Marine Diatoms1 , 2007, Plant Physiology.

[27]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[28]  U. Sorhannus A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution , 2007 .

[29]  M. Badger,et al.  Analysis of Carboxysomes from Synechococcus PCC7942 Reveals Multiple Rubisco Complexes with Carboxysomal Proteins CcmM and CcaA* , 2007, Journal of Biological Chemistry.

[30]  J. Raven,et al.  C3 and C4 Pathways of Photosynthetic Carbon Assimilation in Marine Diatoms Are under Genetic, Not Environmental, Control1[W][OA] , 2007, Plant Physiology.

[31]  Ansgar Gruber,et al.  Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif , 2007, Plant Molecular Biology.

[32]  S. Brunak,et al.  Locating proteins in the cell using TargetP, SignalP and related tools , 2007, Nature Protocols.

[33]  F. Morel,et al.  Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters. , 2007, Environmental microbiology.

[34]  P. Keeling,et al.  Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. , 2006, Molecular biology and evolution.

[35]  Nicole Poulsen,et al.  MOLECULAR GENETIC MANIPULATION OF THE DIATOM THALASSIOSIRA PSEUDONANA (BACILLARIOPHYCEAE) 1 , 2006 .

[36]  Stefan Zauner,et al.  Protein Targeting into the Complex Plastid of Cryptophytes , 2006, Journal of Molecular Evolution.

[37]  H. Braun,et al.  Disruption of a nuclear gene encoding a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex I + III2 levels and alters mitochondrial physiology in Arabidopsis. , 2005, Journal of molecular biology.

[38]  H. Harada,et al.  Identification and characterization of a new carbonic anhydrase in the marine diatom Phaeodactylum tricornutum , 2005 .

[39]  F. Morel,et al.  Biochemistry: A cadmium enzyme from a marine diatom , 2005, Nature.

[40]  E. Boekema,et al.  Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  C. Bowler,et al.  Comparative Genomics of the Pennate Diatom Phaeodactylum tricornutum1[w] , 2005, Plant Physiology.

[42]  P. Kroth,et al.  Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. , 2004, The Plant journal : for cell and molecular biology.

[43]  P. Keeling,et al.  Diversity and evolutionary history of plastids and their hosts. , 2004, American journal of botany.

[44]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[45]  F. Morel,et al.  The Role of the C4 Pathway in Carbon Accumulation and Fixation in a Marine Diatom1 , 2004, Plant Physiology.

[46]  A. Brennicke,et al.  Gamma carbonic anhydrases in plant mitochondria , 2004, Plant Molecular Biology.

[47]  G. Cannon,et al.  A Novel Evolutionary Lineage of Carbonic Anhydrase (ε Class) Is a Component of the Carboxysome Shell , 2004, Journal of bacteriology.

[48]  J. Raven,et al.  An Anaplerotic Role for Mitochondrial Carbonic Anhydrase in Chlamydomonas reinhardtii1 , 2003, Plant Physiology.

[49]  M. Badger,et al.  CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. , 2003, Journal of experimental botany.

[50]  Kerry S. Smith,et al.  Carbonic Anhydrase: New Insights for an Ancient Enzyme* 210 , 2001, The Journal of Biological Chemistry.

[51]  U. Riebesell,et al.  CO2 and HCO3 ߚ uptake in marine diatoms acclimated to different CO2 concentrations , 2001 .

[52]  Y. Matsuda,et al.  Physiological and molecular biological characterization of intracellular carbonic anhydrase from the marine diatom Phaeodactylum tricornutum. , 2001, Plant physiology.

[53]  Rolf Apweiler,et al.  Evaluation of methods for the prediction of membrane spanning regions , 2001, Bioinform..

[54]  Y. Matsuda,et al.  Regulation of the induction of bicarbonate uptake by dissolved CO2 in the marine diatom, Phaeodactylum tricornutum , 2001 .

[55]  J. Moroney,et al.  Carbonic anhydrases in plants and algae , 2001 .

[56]  J. Raven A role for mitochondrial carbonic anhydrase in limiting CO2 leakage from low CO2‐grown cells of Chlamydomonas reinhardtii , 2001 .

[57]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[58]  F. Morel,et al.  Unicellular C4 photosynthesis in a marine diatom , 2000, Nature.

[59]  G. Mclendon,et al.  The active site structure of Thalassiosira weissflogii carbonic anhydrase 1. , 2000, Biochemistry.

[60]  Kerry S. Smith,et al.  Prokaryotic carbonic anhydrases. , 2000, FEMS microbiology reviews.

[61]  F. Morel,et al.  A biological function for cadmium in marine diatoms. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[62]  T. Cavalier-smith,et al.  Membrane heredity and early chloroplast evolution. , 2000, Trends in plant science.

[63]  M. Spalding,et al.  Periplasmic carbonic anhydrase structural gene (Cah1) mutant in chlamydomonas reinhardtii , 1999, Plant physiology.

[64]  P. Falkowski,et al.  Biogeochemical Controls and Feedbacks on Ocean Primary Production , 1998, Science.

[65]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[66]  Erik L. L. Sonnhammer,et al.  A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences , 1998, ISMB.

[67]  J. Moroney,et al.  A novel α‐type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2 , 1998 .

[68]  J. Raven The role of marine biota in the evolution of terrestrial biota: Gases and genes , 1997 .

[69]  F. Morel,et al.  CARBONIC ANHYDRASE IN THE MARINE DIATOM THALASSIOSIRA WEISSFLOGII (BACILLARIOPHYCEAE) 1 , 1997 .

[70]  D. Weeks,et al.  Intracellular Carbonic Anhydrase Is Essential to Photosynthesis in Chlamydomonas reinhardtii at Atmospheric Levels of CO2 (Demonstration via Genomic Complementation of the High-CO2-Requiring Mutant ca-1) , 1997, Plant physiology.

[71]  J. Raven CO2-concentrating mechanisms: a direct role for thylakoid lumen acidification? , 1997 .

[72]  A. M. Johnston,et al.  Inorganic carbon accumulation by the marine diatom Phaeodactylum tricornutum , 1996 .

[73]  D. Hewett‐Emmett,et al.  Functional diversity, conservation, and convergence in the evolution of the alpha-, beta-, and gamma-carbonic anhydrase gene families. , 1996, Molecular phylogenetics and evolution.

[74]  B. Colman,et al.  Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms , 1995 .

[75]  D. M. Nelson,et al.  The Silica Balance in the World Ocean: A Reestimate , 1995, Science.

[76]  J. Ferry,et al.  A carbonic anhydrase from the archaeon Methanosarcina thermophila. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[77]  H. Fukuzawa,et al.  A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[78]  H. Fukuzawa,et al.  Structure and differential expression of two genes encoding carbonic anhydrase in Chlamydomonas reinhardtii. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[79]  H. Fukuzawa,et al.  Nucleotide sequences of two genes CAH1 and CAH2 which encode carbonic anhydrase polypeptides in Chlamydomonas reinhardtii. , 1990, Nucleic acids research.

[80]  M. Badger,et al.  Expression of Human Carbonic Anhydrase in the Cyanobacterium Synechococcus PCC7942 Creates a High CO(2)-Requiring Phenotype : Evidence for a Central Role for Carboxysomes in the CO(2) Concentrating Mechanism. , 1989, Plant physiology.

[81]  J. Moroney,et al.  Effect of Carbonic Anhydrase Inhibitors on Inorganic Carbon Accumulation by Chlamydomonas reinhardtii. , 1985, Plant physiology.

[82]  P. Harrison,et al.  A BROAD SPECTRUM ARTIFICIAL SEA WATER MEDIUM FOR COASTAL AND OPEN OCEAN PHYTOPLANKTON 1 , 1980 .

[83]  D. Werner Introduction with a note on taxonomy , 1977 .

[84]  I. Terekhova,et al.  [Role of carbonic anhydrase in photosynthesis]. , 1975, Doklady Akademii nauk SSSR.

[85]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[86]  W. Fang Transcriptome-Wide Changes in Chlamydomonas reinhardtii Gene Expression Regulated by Carbon Dioxide and the CO 2 -Concentrating Mechanism , 2012 .

[87]  J. Reinfelder,et al.  Carbon concentrating mechanisms in eukaryotic marine phytoplankton. , 2011, Annual review of marine science.

[88]  J. Raven,et al.  C 3 and C 4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control 1 , 2007 .

[89]  J. Reinfelder,et al.  The Role of the C 4 Pathway in Carbon Accumulation and Fixation in a Marine Diatom 1 , 2004 .

[90]  P. Kroth Protein transport into secondary plastids and the evolution of primary and secondary plastids. , 2002, International review of cytology.

[91]  U. Riebesell,et al.  CO 2 and HCO 3 2 uptake in marine diatoms acclimated to different CO 2 concentrations , 2001 .

[92]  S. P. Gibbs The Chloroplast Endoplasmic Reticulum: Structure, Function, and Evolutionary Significance , 1981 .

[93]  D. Sültemeyer,et al.  � 2003, by the American Society of Limnology and Oceanography, Inc. Carbon acquisition of bloom-forming marine phytoplankton , 2022 .

[94]  M. Badger,et al.  CO 2 concentrating mechanisms in cyanobacteria : molecular components , their diversity and evolution , 2022 .