Monomial-Cartesian codes and their duals, with applications to LCD codes, quantum codes, and locally recoverable codes

A monomial-Cartesian code is an evaluation code defined by evaluating a set of monomials over a Cartesian product. It is a generalization of some families of codes in the literature, for instance toric codes, affine Cartesian codes, and J -affine variety codes. In this work we use the vanishing ideal of the Cartesian product to give a description of the dual of a monomial-Cartesian code. Then we use such description of the dual to prove the existence of quantum error correcting codes and MDS quantum error correcting codes. Finally we show that the direct product of monomial-Cartesian codes is a locally recoverable code with t -availability if at least t of the components are locally recoverable codes.

[1]  T. Willmore Algebraic Geometry , 1973, Nature.

[2]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Ruud Pellikaan,et al.  Decoding Linear Error-Correcting Codes up to Half the Minimum Distance with Gröbner Bases , 2009, Gröbner Bases, Coding, and Cryptography.

[4]  James L. Massey,et al.  Linear codes with complementary duals , 1992, Discret. Math..

[5]  R. Villarreal Monomial Algebras , 2015 .

[6]  Itzhak Tamo,et al.  A Family of Optimal Locally Recoverable Codes , 2013, IEEE Transactions on Information Theory.

[7]  C. Rentería,et al.  Reed‐muller codes: an ideal theory approach , 1997 .

[8]  Carlos Munuera Locally Recoverable codes with local error detection , 2018, ArXiv.

[9]  임종인,et al.  Gröbner Bases와 응용 , 1995 .

[10]  Sihem Mesnager,et al.  Linear Codes Over 𝔽q Are Equivalent to LCD Codes for q>3 , 2018, IEEE Trans. Inf. Theory.

[11]  Jacobus H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[12]  Johan P. Hansen,et al.  Toric Surfaces and Error-correcting Codes , 2000 .

[13]  H. Tapia-Recillas,et al.  Reed-Muller-Type Codes Over the Segre Variety , 2002 .

[14]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[15]  Claude Carlet,et al.  Complementary dual codes for counter-measures to side-channel attacks , 2016, Adv. Math. Commun..

[16]  Carlos Galindo,et al.  Stabilizer quantum codes from J-affine variety codes and a new Steane-like enlargement , 2015, Quantum Information Processing.

[17]  S. Bulygin,et al.  Decoding and Finding the Minimum Distance with Gröbner Bases: History and New Insights , 2010 .

[18]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[19]  Ivan Soprunov,et al.  Toric Surface Codes and Minkowski Length of Polygons , 2008, SIAM J. Discret. Math..

[20]  Ivan Soprunov,et al.  Bringing Toric Codes to the Next Dimension , 2009, SIAM J. Discret. Math..

[21]  Cícero Carvalho,et al.  On the next-to-minimal weight of affine cartesian codes , 2017, Finite Fields Their Appl..

[22]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[23]  Victor K.-W. Wei,et al.  On the generalized Hamming weights of product codes , 1993, IEEE Trans. Inf. Theory.

[24]  Gretchen L. Matthews,et al.  Affine Cartesian codes with complementary duals , 2018, Finite Fields Their Appl..

[25]  Rafael H. Villarreal,et al.  Affine cartesian codes , 2012, Designs, Codes and Cryptography.

[26]  Stanislav Bulygin,et al.  Bounded distance decoding of linear error-correcting codes with Gröbner bases , 2009, J. Symb. Comput..

[27]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[28]  Ivan Soprunov,et al.  Lattice polytopes in coding theory , 2014, Journal of Algebra Combinatorics Discrete Structures and Applications.

[29]  Carlos Galindo,et al.  On the distance of stabilizer quantum codes from J-affine variety codes , 2016, Quantum Information Processing.

[30]  Olav Geil,et al.  Weighted Reed–Muller codes revisited , 2011, Des. Codes Cryptogr..

[31]  Peter Beelen,et al.  Generalized Hamming weights of affine Cartesian codes , 2017, Finite Fields Their Appl..

[32]  Cícero Carvalho,et al.  Projective Reed-Muller type codes on rational normal scrolls , 2016, Finite Fields Their Appl..

[33]  Diego Ruano,et al.  On the structure of generalized toric codes , 2006, J. Symb. Comput..

[34]  Maria Bras-Amorós,et al.  Duality for some families of correction capability optimized evaluation codes , 2008, Adv. Math. Commun..

[35]  G. R. Pellikaan,et al.  Decoding error-correcting codes with Grobner bases , 2007 .

[36]  David Joyner,et al.  Toric Codes over Finite Fields , 2002, Applicable Algebra in Engineering, Communication and Computing.

[37]  Hiram H. López,et al.  Projective Nested Cartesian Codes , 2014, 1411.6819.

[38]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[39]  Cícero Carvalho,et al.  On the second Hamming weight of some Reed-Muller type codes , 2013, Finite Fields Their Appl..

[40]  M. Tsfasman,et al.  Algebraic Geometric Codes: Basic Notions , 2007 .

[41]  Shuhong Gao,et al.  GRÖBNER BASES , PADÉ APPROXIMATION , AND DECODING OF LINEAR CODES , 2005 .

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[44]  Cem Güneri Algebraic geometric codes: basic notions , 2008 .